Bitmap算法
与其说是算法,不如说是一种紧凑的数据存储结构。其实如果并非如此大量的数据
,有很多排重方案可以使用,典型的就是哈希表。
public int[] removeDuplicates(int[] array) {
int index = 0;
int[] newArray = new int[array.length];
Map<Integer, Boolean> maps = new LinkedHashMap<Integer, Boolean>();
for(int num : array) {
if(!maps.contains(num)) {
newArray[index++] = num;
maps.put(num, true);
}
}
return newArray;
}
实际上,哈希表实际上为每一个可能出现的数字提供了一个一一映射的关系,每个元素都相当于有了自己的独享的一份空间,这个映射由散列函数来提供(这里我们先不考虑碰撞)。实际上哈希表甚至还能记录每个元素出现的次数,这样的数据结构完成这个任务有点“大材小用”了。
我们拆解一下我们的需求:
- 集合中每个元素(示例中是int)有一个独享的空间
- 找到一个到这个空间的映射方法
这个空间要多大?对于我们的问题来说,一个boolean就够了,或者说,1个bit就够了,我们只想知道某个元素出现过没有。如果为每个所有可能的值分配1个bit,32bit的int所有可能取值需要内存空间为:
232 bit=229 Byte=512MB
那怎么样完成这个映射呢?其实就是Bitmap所要完成的工作了。如果我们把整型1-8依次映射到第一个Byte上,整型9-16依次映射到第二个Byte上,每个bit就代表这个int值是否出现过,初值为0(false)。
若扩展到整个int取值域,申请一个byte[2^32^/8](一共2^32^个数,1byte占8bit)即可
,示例代码如下:
public static final int _1MB = 1024 * 1024;
//每个byte记录8bit信息,也就是8个数是否存在于数组中
public static byte[] flags = new byte[ 512 * _1MB ];
public static void main(String[] args) {
//待判重数据
int[] array = {255, 1024, 0, 65536, 255};
int index = 0;
for(int num : array) {
if(!getFlag(num)) {
//未出现的元素
array[index] = num;
index = index + 1;
//设置标志位
setFlag(num);
System.out.println("set " + num);
} else {
System.out.println(num + " already exist");
}
}
}
public static void setFlag(int num) {
//使用每个数的低三位作为byte内的映射
//例如: 255 = (11111111)
//低三位(也就是num & (0x07))为(111) = 7, 则byte的第7位为1, 表示255已存在
flags[num >> 3] |= 0x01 << (num & (0x07));
}
public static boolean getFlag(int num) {
return (flags[num >> 3] >> (num & (0x07)) & 0x01) == 0x01;
}
其实,就是按int从小到大的顺序依次摆放到byte[]中
很显然,对于小数据量、数据取值很稀疏,上面的方法并没有什么优势,但对于海量的、取值分布很均匀的集合进行去重,Bitmap极大地压缩了所需要的内存空间。于此同时,还额外地完成了对原始数组的排序工作。缺点是,Bitmap对于每个元素只能记录1bit信息,如果还想完成额外的功能,恐怕只能靠牺牲更多的空间、时间来完成了。
布隆过滤器(Bloom Filter)
然而Bitmap不是万能的,如果数据量大到一定程度,如开头写的64bit类型的数据,还能不能用Bitmap?我们来算一算:
264bit = 261 Byte = 2048PB = 2EB
EB(Exabyte,艾字节)这个计算机科学中统计数据量的单位有多大,有兴趣的小伙伴可以查阅下资料。这个量级的Bitmap,已经不是人类硬件所能承担的了。我相信谁也不会想用集群去计算这么一个问题吧1?所以Bitmap的好处在于空间复杂度不随原始集合内元素的个数增加而增加,而它的坏处也源于这一点——空间复杂度随集合内最大元素增大而线性增大。
所以接下来,我们要引入另一个著名的工业实现——布隆过滤器(Bloom Filter)。如果说Bitmap对于每一个可能的整型值,通过直接寻址的方式进行映射,相当于使用了一个哈希函数,那布隆过滤器就是引入了k ( k > 1 )个相互独立的哈希函数
,保证在给定的空间、误判率下,完成元素判重的过程。下图中是k = 3 时的布隆过滤器。
x,y,z经由哈希函数映射将各自在Bitmap中的3个位置置为1,当w出现时,仅当3个标志位都为1时,才表示w在集合中。图中所示的情况,布隆过滤器将判定w不在集合中。
那么布隆过滤器的误差有多少?k的值与数据量n有什么关系吗?详细数学分析请参考原文,
我在这只给出结论:
若以m = 8n , k = 0.7 * m/n = 5.6计算,Bitmap集合的大小为242 bit = 239 Byte = 512GB,此时的ε = 0.55.6 ≈ 0.02 。并且要知道,以上计算的都是误差的上限。当输入元素个数逼近集合总元素n时,误差率便逐渐逼近这个上界。
布隆过滤器通过引入一定错误率,使得海量数据判重在可以接受的内存代价中得以实现。从上面的公式可以看出,随着集合中的元素不断输入过滤器中(n增大),误差将越来越大。但是,当Bitmap的大小m(指bit数)足够大时,比如比所有可能出现的不重复元素个数还要大10倍以上时,错误概率是可以接受的。相比于单纯的bitmap,这个算法跳出了空间复杂度对待判元素值域的依赖,转而依赖总元素个数,这是一个更加工程可实现的算法——前者不管你的数集有多大,所需要的内存空间是一定的;后者,数集越大,想要达到相同误判率,所需要的内存空间就越大。
最后我们所要做的,就是实现一个布隆过滤器,然后利用它对硬盘上的5TB数据一一判重,并写回硬盘中。