这道题是道非常典型的迷宫问题,所以说比较简单。
思路
***这道题问的是所有路径,因此必须要回溯;***
题目背景
给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过。给定起点坐标和终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案。在迷宫中移动有上下左右四种方式,每次只能移动一个方格。数据保证起点上没有障碍。
输入格式
第一行N、M和T,N为行,M为列,T为障碍总数。第二行起点坐标SX,SY,终点坐标FX,FY。接下来T行,每行为障碍点的坐标。
输出格式
给定起点坐标和终点坐标,问每个方格最多经过1次,从起点坐标到终点坐标的方案总数。
输入输出样例
输入 #1
2 2 1
1 1 2 2
1 2
输出 #1
1
说明/提示
【数据规模】
1≤N,M≤5
解释见代码:
#include<iostream>
using namespace std;
int N,M,T;//如题目中的含义
int SX,SY,FX,FY; ;//如题目中的含义
int ans=0;//表示最后有多少种方案可以走到终点
int map[6][6];//记录数据的二维数组,全局数组自动清零
bool vis[6][6];//标记是否访问过的二维同样大小的数组
int dir[4][2]={
{0,1},{-1,0},{0,-1},{1,0}};
void dfs(int x,int y)
{
if(x==FX && y==FY)//出口的判断
{
ans++;//方式数加一
return ;//回归
}
for(int i=0; i<4; i++)//方向
{
int tx=x+dir[i][0];
int ty=y+dir[i