题目描述
给你一个由 不同 正整数组成的数组 nums ,请你返回满足 a * b = c * d 的元组 (a, b, c, d) 的数量。其中 a、b、c 和 d 都是 nums 中的元素,且 a != b != c != d 。
示例 1:
输入:nums = [2,3,4,6]
输出:8
解释:存在 8 个满足题意的元组:
(2,6,3,4) , (2,6,4,3) , (6,2,3,4) , (6,2,4,3)
(3,4,2,6) , (4,3,2,6) , (3,4,6,2) , (4,3,6,2)
示例 2:
输入:nums = [1,2,4,5,10]
输出:16
解释:存在 16 个满足题意的元组:
(1,10,2,5) , (1,10,5,2) , (10,1,2,5) , (10,1,5,2)
(2,5,1,10) , (2,5,10,1) , (5,2,1,10) , (5,2,10,1)
(2,10,4,5) , (2,10,5,4) , (10,2,4,5) , (10,2,5,4)
(4,5,2,10) , (4,5,10,2) , (5,4,2,10) , (5,4,10,2)
提示:
1 <= nums.length <= 1000
1 <= nums[i] <= 104
nums 中的所有元素 互不相同
题解
我的想法是先算出元组中两两元素的乘积,用一个列表 mul 存起来。接着,对列表 mul 进行升序排序,用一个 while 循环去看有几个乘积是一样的,对于出现 n 次的乘积,那它对应的同积元组的数量就会增加 8*n*(n-1)/2,即 4*n*(n-1),遍历完列表 mul 将对应的数量累加起来就是满足题意的元组数。
解法
class Solution(object):
def tupleSameProduct(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
mul = []
for i in range(len(nums)-1):
for j in range(i+1, len(nums)):
mul.append(nums[i]*nums[j])
mul.sort()
s = 0
i = 0
while i < (len(mul) - 1):
j = 0
while mul[i+1] == mul[i]:
j = j + 1
i = i + 1
if j:
s = s + 4 * (j+1) * j
i = i + 1
return s
**【碎碎念】也不太懂调库啥的,一直用 C 的思想写 python 代码… 第一次实现双击败,amazing!