本文核心内容是关于数据治理和数据中台闭环管理系统的建设和实施方案。它详细介绍了数据治理的背景、目标、建设历程、功能规划、设计思想、技术体系以及系统架构等方面的内容。
一、数据治理的背景与痛点
-
业务人员:面临数据报表开发周期长、数据字段不清晰、数据质量差等问题。
-
分析人员:难以获取准确数据,数据访问权限不明确。
-
各级领导:需要提高数据报表效率,减少低级数据需求。
-
运维人员:数据报表问题频发,难以快速定位问题。
-
开发人员:业务需求变化快,数据报表开发压力大,使用率低。
二、数据治理的建设目标
-
建立全员数据能力:通过数据治理,提高企业整体数据利用能力。
-
数据全生命周期管理:涵盖数据采集、开发、计算、存储、质量校验、可视化、调度、共享等环节。
-
统一数据资产:整合企业内部数据,形成统一的数据资产。
-
数据驱动决策:基于数据资产进行业务和管理决策。
三、数据治理闭环管理
-
平台管理中心:负责Web服务、数据库服务等基础服务管理。
-
数据管理中心:管理数据采集、交换、存储等。
-
计算引擎中间件:提供数据计算能力。
-
存储计算中心:负责数据存储和计算资源管理。
-
任务编排调度:实现数据任务的调度和编排。
-
数据质量校验:确保数据质量,提供数据校验功能。
-
数据应用中心:支持数据可视化、报表生成等应用。
-
数据共享中心:实现数据共享和开放。
-
平台监控中心:监控平台运行状态,提供告警功能。
四、功能介绍
-
构建标准统一的数据底座:整合企业数据,形成统一的数据基础。
-
敏捷化的数据开发:提供数据开发IDE,支持拖拽式工作流。
-
集中化的数据资源:建立数据目录管理,实现数据资源集中化。
-
共享数据服务体系:提供数据共享和开放服务。
-
数据质量治理体系:建立数据质量校验和监控体系。
-
灵活的服务编排能力:支持服务编排,提高开发效率。
五、功能规划
-
平台管理:提供Web服务、数据库服务等。
-
数据管理:管理数据采集、交换、存储等。
-
存储与计算:支持分布式文件存储、多语言脚本编辑等。
-
计算中间件:提供计算引擎中间件,支持多数据引擎。
-
任务编排调度:实现任务调度和编排。
-
数据仓库:支持分层建模、数据源管理等。
-
数据共享:提供数据共享和开放服务。
-
数据应用:支持数据可视化、报表生成等。
-
数据质量校验:提供数据校验、质量报表等功能。
-
平台监控:监控平台运行状态,提供告警功能。
六、设计思想
-
开源生态为基础:结合前沿开源技术,进行二次开发。
-
组件化思维:使用Minio、Airflow、ClickHouse等开源组件。
-
一体化数据生产线:形成自主可控的技术体系,建设数据中台。
七、技术体系与系统架构
-
数据采集:支持实时和离线采集,融合内外部数据。
-
数据融合:打破信息孤岛,实现数据跨系统整合。
-
敏捷开发平台:提供可视化界面,降低开发门槛。
-
高性能实时查询与计算:支持大规模数据的实时查询和计算。
-
分布式附件存储:提供高性能附件读写能力。
-
数据调度管理:提供统一的数据调度平台,支持任务编排。