YOLOV10训练步骤

1.环境配置
****************************************************************************************************************************************************
conda create -n yolov10 python=3.9
conda activate yolov10
pip install -r requirements.txt
pip install -e .
************************************************************************************************************************

2.检测
****************************************************************************************************************************************************
开始:
 准备数据集,存放到ultralytics\cfg\datasets\VOCdevkit文件夹下的Annotations及images文件夹下。
# 训练
 # 训练命令行 yolov5n 32倍整数

 yolo detect train data=coco.yaml model=yolov10n/s/m/b/l/x.yaml epochs=500 batch=256 imgsz=640 device=0,1,2,3,4,5,6,7

 yolo detect train data=m
yolov8的训练步骤可以按照以下方式进行: 1. 首先,根据需要选择训练方式。yolov8有两种训练执行方式。一种是使用yolov8x.yaml初始化模型进行训练,需要修改yolov8x.yaml中的一个参数,即类别数。 2. 如果选择第一种训练方式,需要修改yolov8x.yaml文件中的类别数参数,确保其与你的数据集中的类别数相匹配。 3. 第二种训练方式是使用预训练yolov8n.pt模型进行训练。这种方式会自动下载yolov8n.pt模型,但下载可能会很慢。如果后续训练时重新下载yolov8n.pt出现问题,可能是因为当前目录下没有yolov8n.pt文件。此时,可以将yolov8n.pt文件复制到当前目录下,以便跳过下载过程。 4. 在训练之前,确保已经准备好训练数据集,并将其划分为训练集和验证集。 5. 运行训练脚本,开始训练过程。训练脚本通常是一个Python脚本,其中会设置训练的超参数、数据路径等相关参数。 6. 在训练过程中,可以监视训练损失和验证损失,以评估模型的性能和训练进展。 7. 训练完成后,可以使用训练好的模型进行目标检测或其他相关任务。 需要注意的是,以上是一般的yolov8训练步骤,具体细节可能因应用场景和实际需求而有所不同。因此,建议参考官方文档或相关资源以获取更详细的训练步骤和参数设置。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [超详细yolov8训练数据集流程](https://blog.csdn.net/weixin_58465955/article/details/130291262)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [YOLOv8详解全流程捋清楚-每个步骤](https://blog.csdn.net/Albert233333/article/details/130044349)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_44119674

觉得有帮助,鼓励下吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值