OpenCV简单操作-20240706

OpenCV常用用法:
1、图像的灰度化处理
按照颜色对图像进行分类,可以分为彩色图像、灰度图像和二值图像。
灰度图像是只含亮度信息,不含色彩信息的图像。
灰度化处理是把彩色图像转换为灰度图像的过程,是图像处理中的基本操作。
OpenCV 中彩色图像使用 BGR 格式。灰度图像中用 8bit 数字 0~255 表示灰度,如:0 表示纯黑,255 表示纯白。
彩色图像进行灰度化处理,可以在读取图像文件时直接读取为灰度图像,也可以通过函数 cv.cvtColor() 将彩色图像转换为灰度图像。

import cv2 as cv
if __name__ == '__main__':
    img = cv.imread("GrayscaleLena.tif")<
### 如何在 Python 中同时安装 OpenCVopencv-contrib-python、NumPy 和 Pandas 为了在同一环境中成功安装 `opencv`、`opencv-contrib-python`、`numpy` 和 `pandas`,可以按照以下方式操作: #### 使用 pip 安装依赖库 通过 PyPI 镜像源加速安装这些包是一个简单有效的方法。以下是具体的命令示例[^1]: ```bash pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn opencv-python opencv-contrib-python numpy pandas ``` 此命令会从清华大学的镜像站点下载并安装所需的软件包。 --- #### 如果需要手动编译 OpenCV 及其扩展模块 对于某些特定需求(如自定义配置),可以选择手动编译 OpenCV 并集成 NumPy 支持。以下是基于 Ubuntu 18.04 的具体步骤说明[^2][^3]: ##### 准备工作 确保系统已安装必要的开发工具和依赖项: ```bash sudo apt update && sudo apt upgrade sudo apt install build-essential cmake git pkg-config libgtk-3-dev \ libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \ libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \ gfortran openexr libatlas-base-dev python3-dev python3-numpy ``` ##### 下载 OpenCVOpenCV Contrib 源码 克隆官方仓库到本地目录: ```bash git clone https://github.com/opencv/opencv.git cd opencv git checkout 4.1.1 cd .. git clone https://github.com/opencv/opencv_contrib.git cd opencv_contrib git checkout 4.1.1 ``` ##### 编译配置 创建构建文件夹并运行 CMake 命令来指定所需选项: ```bash mkdir -p ~/opencv/build && cd ~/opencv/build cmake -D CMAKE_BUILD_TYPE=Release \ -D PYTHON_DEFAULT_EXECUTABLE=$(which python3) \ -D PYTHON_INCLUDE_DIR=$(python3 -c "from sysconfig import get_paths; print(get_paths()['include'])") \ -D PYTHON_INCLUDE_DIR2=$(python3 -c "import distutils.sysconfig as s; print(s.get_config_var('INCLUDEPY'))") \ -D PYTHON_LIBRARY=$(python3 -c "import distutils.sysconfig as s; print(s.get_config_var('LIBDIR')+'/lib'+s.get_config_vars('LDLIBRARY')[0])") \ -D PYTHON3_NUMPY_INCLUDE_DIRS=$(python3 -c "import numpy; print(numpy.get_include())") \ -D OPENCV_GENERATE_PKGCONFIG=ON \ -D BUILD_opencv_python2=OFF \ -D WITH_CUDA=OFF \ -D ENABLE_CXX11=ON \ -D INSTALL_PYTHON_EXAMPLES=ON \ -D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules .. ``` 完成以上设置后即可继续执行后续步骤。 ##### 构建与安装 启动实际编译过程以及最终安装阶段: ```bash make -j$(nproc) sudo make install sudo ldconfig ``` 此时应该已经完成了带有额外功能支持的手动版 OpenCV 安装流程。 --- #### 关于 NumPy 和 Pandas 的自动兼容性处理 当利用预打包形式(即通过 `pip` 工具获取二进制发行版本)来进行安装时,通常无需担心它们之间的相互作用问题;因为官方维护者会在发布前验证过彼此间的协作关系[^1]。然而,在自行编译期间,则需特别留意所选参数是否正确反映了目标环境下的实际情况——尤其是涉及路径解析的部分。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_44119674

觉得有帮助,鼓励下吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值