【机器学习】笔记1:Machine Learning 基本术语与概念

Preface

在学习林轩田老师的机器学习基石和技法课程中,发现有许多符号并不熟悉。翻阅周志华老师的西瓜书,发现绪论部分作了详细解释,与轩田老师的课件中的符号表示习惯基本一致,特做此记录。

1. Machine Learning Model

在这里插入图片描述

2. Notations
2.1 空间
  • 输入空间:反映事件或者对象在某方面的表现或者性质的事项,称之为“属性”或者“特征”。属性的取值,成为“属性值”。属性张成的空间称之为“属性空间”,“样本空间”或者是“输入空间”。
  • 输出空间:一般地,我们记每个示例是 d d d 维样本空间中的一个向量, d d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值