一、分布式事务介绍
JavaWeb 中的分布式事务通常是指在分布式系统中管理多个资源管理器(如数据库、消息队列等)之间的协调工作。在一个分布式环境中,一个业务操作可能需要跨多个服务或数据存储进行处理,而这些服务或存储可能是由不同的事务管理器控制的。为了确保这些跨服务或跨存储的操作能够正确地执行,就需要一种机制来保证事务的一致性,即分布式事务。
分布式事务的基本概念
分布式事务指的是在分布式环境下,一组操作要么全部成功,要么全部失败。它涉及到两个或更多独立的资源管理器之间的协调,以保证ACID属性(原子性、一致性、隔离性、持久性)。
常见的分布式事务解决方案
两阶段提交(2PC, Two-Phase Commit)
这是最经典的分布式事务协议之一。它分为两个阶段:准备阶段和提交阶段。在准备阶段,所有参与者都会检查事务能否提交,并准备好自己的状态变更;在提交阶段,协调者会根据所有参与者的反馈决定是否提交或回滚整个事务。
三阶段提交(3PC, Three-Phase Commit)
3PC是对2PC的改进,在2PC的基础上增加了一个预表决阶段,目的是为了减少阻塞,提高系统的可用性。
最终一致性(Eventual Consistency)
通过消息队列异步处理事务的一部分,实现最终一致性的解决方案。这种方式并不保证事务的强一致性,而是通过异步补偿机制,让系统最终达到一致的状态。
TCC(Try-Confirm-Cancel)
这是一种特殊的事务模式,其中Try操作完成业务预处理,Confirm确认Try操作,Cancel撤销Try操作。这种模式要求服务提供方能够支持TCC模式,并且能够处理Confirm和Cancel两种情况。
SAGA长事务
SAGA是多个本地事务组合成一个分布式事务的一种方式。每个本地事务都是一个步骤,如果中间某个步骤失败,则通过补偿事务来回滚之前已经成功的步骤,从而保证整体的一致性。
实现分布式事务的关键点
- 事务补偿:当某个子事务失败时,需要有机制来进行事务补偿,即回滚之前的操作。
- 幂等性:在设计服务接口时,要考虑多次调用同一接口的结果是一样的,这样可以避免重复提交导致的问题。
- 事务协调者:需要有一个中心化的服务来协调所有的子事务,保证它们能够按照预期执行。
- 状态同步:各个服务之间需要保持状态同步,这通常需要使用消息队列或其他通信机制来实现。
在实际应用中,选择哪种分布式事务解决方案取决于具体的应用场景和技术栈。每种方案都有其适用范围和局限性,开发者需要根据实际情况来权衡选择。
二、分布式事务的具体例子
让我们通过一个具体的例子来说明分布式事务是如何工作的。假设我们有一个电子商务系统,该系统包括订单服务、库存服务以及支付服务三个部分。当用户下单时,需要同时处理订单创建、库存扣减以及支付发起这三个操作,并且要确保这些操作作为一个整体成功或失败。
场景描述
- 订单服务:创建订单信息。
- 库存服务:减少商品库存。
- 支付服务:创建支付记录,并等待用户支付。
使用两阶段提交(2PC)来实现分布式事务
在这个例子中,我们可以使用两阶段提交协议来处理这个分布式事务。以下是详细的步骤:
第一阶段:准备阶段
-
订单服务作为协调者开始事务,并询问其他两个服务是否可以执行相应的操作:
- 订单服务向库存服务发送请求,询问是否可以扣减库存。
- 订单服务向支付服务发送请求,询问是否可以创建支付记录。
-
库存服务和支付服务各自检查它们的状态:
- 库存服务检查是否有足够的库存,并预留库存。
- 支付服务创建支付记录并标记为待支付状态。
-
库存服务和支付服务回复订单服务表示准备就绪。
第二阶段:提交阶段
-
订单服务根据第一阶段的回复决定提交还是回滚整个事务:
- 如果所有服务都表示准备就绪,订单服务将通知所有服务正式执行事务。
- 如果有任何一个服务无法完成任务,则订单服务将通知所有服务回滚事务。
-
库存服务和支付服务执行相应的操作:
- 库存服务正式扣减库存。
- 支付服务正式创建支付记录。
-
订单服务确认所有操作成功后,正式创建订单。
注意事项
- 在准备阶段,所有参与的服务都需要锁定相关的资源,以防止在这段时间内发生冲突。
- 如果在第二阶段出现了网络故障或者某个服务不可用的情况,那么需要有重试机制来尝试恢复事务的状态。
- 在实际应用中,还需要考虑事务超时的情况,设置合理的超时时间,以便能够在长时间未收到响应的情况下进行处理。
这个例子展示了如何使用2PC来协调一个涉及多个服务的分布式事务。需要注意的是,2PC虽然简单易懂,但在高并发情况下可能会导致性能瓶颈和资源锁定等问题,因此在实际生产环境中可能需要考虑更复杂的协议或者使用一些现代的分布式事务框架来简化开发过程。
三、目前常见框架
目前流行的分布式事务框架主要是针对微服务架构下出现的分布式事务问题提供的解决方案。这些框架通常提供了不同的事务模式来适应不同的应用场景,并且通常具备易用性和扩展性。以下是一些当前较为流行的分布式事务框架:
Seata (原名 Fescar)
Seata 是阿里巴巴开源的一个分布式事务解决方案,它支持多种事务模式,包括 AT(Automatic Transaction)、TCC(Try-Confirm-Cancel)、SAGA 和 XA 模式。AT 模式是 Seata 的特色,它简化了事务的实现,使得开发者无需关心事务的补偿逻辑。
官方文档链接 点击跳转
目前使用的大多是这个,作为开源框架已经经过阿里内部业务的大量实战考验,相当稳定
DTM (Distributed Transaction Manager)
DTM 是一个轻量级的分布式事务管理框架,支持多种分布式事务协议,如 TCC、SAGA、XA 和事务消息。DTM 的特点是易于部署和扩展,它仅依赖 MySQL,适合集群环境下的水平扩展。
TCC-Transaction
TCC-Transaction 是一个基于 TCC 模式的分布式事务框架,它允许开发者通过简单的注解来实现 TCC 事务模式。该框架适用于需要强一致性的场景。
ByteTCC
ByteTCC 是一个支持 TCC 模式的分布式事务框架,它可以在多种服务框架下(如 Dubbo 和 Spring Cloud)使用。ByteTCC 通过简单的注解支持声明式事务管理。
EasyTransaction
EasyTransaction 是一个轻量级的分布式事务框架,旨在简化分布式事务的实现。它支持 TCC 模式,并且可以与 Spring Boot 结合使用,提供了一种便捷的方式来实现分布式事务。
ServiceComb-Pack
ServiceComb-Pack 是华为开源的一个微服务框架,它也包含了对分布式事务的支持,尤其是对于 TCC 模式的实现。
Hptx
Hptx 是一个高性能、无侵入、事件驱动的 Go 语言分布式事务框架。它基于 Kubernetes Control-Loop 思想设计,提供了一种新颖的分布式事务解决方案。
DBPack
DBPack 是一个支持跨语言分布式事务、读写分离、分库分表的 Mesh 方案。它采用了事件驱动架构,可以支持任意编程语言。
其他
还有其他一些分布式事务框架或工具,如 Spring Cloud Sleuth
可以用来追踪分布式事务,Spring Cloud Commons
提供了一些基本的支持等。
选择框架时的考虑
在选择合适的分布式事务框架时,你需要考虑以下几个方面:
- 事务模式:根据你的业务需求选择最适合的事务模式(如 TCC、SAGA 或 AT 等)。
- 框架的成熟度和社区支持:选择一个成熟度较高并且有活跃社区支持的框架。
- 兼容性和集成性:确保所选框架能很好地与现有的微服务架构集成。
- 性能和可扩展性:评估框架的性能表现以及它是否支持横向扩展。
- 文档和支持:良好的文档和支持可以帮助快速上手。
选择合适的分布式事务框架可以极大地简化微服务架构下的事务处理,但同时也需要考虑到具体的应用场景和技术栈来做出最佳选择。
注意:以上为AI自动提炼注意识别