深度机器学习中的batch的大小对学习效果有何影响?https://www.zhihu.com/question/32673260
回归、分类与聚类:三大方向剖解机器学习算法的优缺点
https://zhuanlan.zhihu.com/p/27013861
正则化其实就是一种对过多回归系数采取惩罚以减少过拟合风险的技术
常用激活函数(激励函数)理解与总结
https://blog.csdn.net/tyhj_sf/article/details/79932893
梯度消失(vanishing gradient)和梯度爆炸(exploding gradient)
https://blog.csdn.net/guoyunfei20/article/details/78283043
网络解析(一):LeNet-5详解
https://cuijiahua.com/blog/2018/01/dl_3.html
目标检测性能评价指标
https://blog.csdn.net/qq_29893385/article/details/81213377
mAP IOU
FPS:目标检测算法重要性能指标是速度,对于实际场景速度快才能实现实时检测。评估速度的常用指标是每秒帧率(Frame Per Second,FPS),即每秒内可以处理的图片数量。要对比FPS,需要在同一硬件上进行。也可以使用处理一张图片所需时间来评估检测速度,时间越短,速度越快
学习率
学习率太小,会导致网络loss下降非常慢,如果学习率太大,那么参数更新的幅度就非常大,就会导致网络收敛到局部最优点,或者loss直接开始增加
凸优化问题有个很好的性质,它的局部最优解一定是全局最优解。
https://cloud.tencent.com/developer/news/281788
准确率与召回率:
https://www.cnblogs.com/qniguoym/p/8144028.html
Precision又叫查准率,Recall又叫查全率。这两个指标共同衡量才能评价模型输出结果。
TP: 预测为1(Positive),实际也为1(Truth-预测对了)
TN: 预测为0(Negative),实际也为0(Truth-预测对了)
FP: 预测为1(Positive),实际为0(False-预测错了)
FN: 预测为0(Negative),实际为1(False-预测错了)
总的样本个数为:TP+TN+FP+FN。
Accuracy/Precision/Recall的定义
Accuracy = (预测正确的样本数)/(总样本数)=(TP+TN)/(TP+TN+FP+FN)
Precision = (预测为1且正确预测的样本数)/(所有预测为1的样本数) = TP/(TP+FP)
Recall = (预测为1且正确预测的样本数)/(所有真实情况为1的样本数) = TP/(TP+FN)