在机器学习中,ground truth是什么意思?

本文深入探讨了在机器学习领域,尤其是有监督学习中,GroundTruth的重要性。GroundTruth指的是训练集中用于验证模型准确性的正确标注数据,是评估模型性能的基础。文章解释了GroundTruth如何帮助收集目标数据,并在统计模型中验证或否定研究假设。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

维基百科对Ground Truth在机器学习领域的解释是:

在机器学习中,“ground truth”一词指的是训练集对监督学习技术的分类的准确性。这在统计模型中被用来证明或否定研究假设。“ground truth”这个术语指的是为这个测试收集适当的目标(可证明的)数据的过程。

在有监督学习中,数据是有标注的,以(x, t)的形式出现,其中x是输入数据,t是标注.正确的t标注是ground truth,* 错误的标记则不是。(也有人将所有标注数据都叫做ground truth)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值