我喜欢给自己压力,必须得定一个很高的目标,逼自己朝着这个目标前进,不管会不会实现,都是一个动力。 ----喻言
链接:https://ac.nowcoder.com/acm/problem/15823
来源:牛客网
题目描述
杨老师给同学们玩个游戏,要求使用乘法和减法来表示一个数,他给大家9张卡片,然后报出一个数字,要求大家用表达式的形式来表示出这个数
100 可以表示为这样的形式:100 = 129*67-8543 , 还可以表示为:100 = 13*489-6257
注意特征:表达式中,数字1~9分别出现且只出现一次(不包含0)。
类似这样的表达式,100 有 20 种表示法。
题目要求:
从标准输入读入一个正整数N(N<1000 * 1000)
程序输出该数字用数码1~9不重复不遗漏地组成的全部种数。
注意:不要求输出每个表示,只统计有多少表示法!
输入描述:
一个正整数N
输出描述:
输出有多少种表示法
示例1
输入
复制
100
输出
复制
20
备注:
注意只有一个乘法和一个减法,*号保证在-的前面
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <vector>
#include <ctime>
#include <cctype>
#include <bitset>
#include <utility>
#include <sstream>
#include <complex>
#include <iomanip>
#include<climits>//INT_MAX
#define PP pair<ll,int>
#define inf 0x3f3f3f3f
#define llinf 0x3f3f3f3f3f3f3f3fll
#define dinf 1000000000000.0
typedef long long ll;
using namespace std;
int const N=1e5+10;
int const mod=1e9+7;
const int maxn=1e5+10;
int n,a[10],vis[10],ct;
void hhs(int sd)
{
if(sd==9){
int x=0,y=0,z=0;
for(int i=1;i<=9;i++){
x=x*10+a[i];
y=0;
for(int j=i+1;j<=9;j++){
y=y*10+a[j];
z=0;
for(int k=j+1;k<=9;k++)
z=z*10+a[k];
if(x*y-z==n)
ct++;
}
}
}
for (int i=1;i<=9;i++){
if(vis[i]==0){
a[sd+1]=i;
vis[i]=1;
hhs(sd+1);
vis[i]=0;
}
}
}
int main()
{
scanf("%d",&n);
for (int i=1;i<=9;i++){
a[1]=i;
vis[i]=1;
hhs(1);
vis[i]=0;
}
printf("%d\n",ct);
return 0;
}
链接:https://ac.nowcoder.com/acm/problem/15839
来源:牛客网
题目描述
Alice has an array a0a1...an−1a_0a_1...a_{n-1}a0a1...an−1, she want to calculate the other array b0b1...bn−1b_0b_1...b_{n-1}b0b1...bn−1 where
Can you help her? For simplicity, please output ∑i=0n−1(i+1)⋅bi mod 1000000007\sum_{i=0}^{n-1} (i+1)\cdot b_i \bmod 1000000007∑i=0n−1(i+1)⋅bimod1000000007
输入描述:
In the first line there are two integer n, m,(1 <= n <= 100000, 1 <= m <= 1000000000). In the second line there are n integersa0,a1,...,an−1(1<=ai<=1000000000)a_0,a_1,...,a_{n-1} (1 <= a_i <= 1000000000)a0,a1,...,an−1(1<=ai<=1000000000) .
输出描述:
Output a single integer, which is∑i=0n−1(i+1)⋅bi mod 1000000007\sum_{i=0}^{n-1} (i+1)\cdot b_i \bmod 1000000007∑i=0n−1(i+1)⋅bimod1000000007
示例1
输入
复制
5 2 1 10 6 10 8
输出
复制
4985
说明
b0=a0⋅a0=1b_0 = a_0\cdot a_0 = 1b0=a0⋅a0=1 b1=a0⋅a1+a1⋅a0+a1⋅a1=120b_1 = a_0\cdot a_1 + a_1\cdot a_0 + a_1\cdot a_1= 120b1=a0⋅a1+a1⋅a0+a1⋅a1=120 b2=a0⋅a2+a1⋅a2+a2⋅a0+a2⋅a1+a2⋅a2=168b_2 = a_0\cdot a_2 + a_1\cdot a_2 + a_2\cdot a_0 + a_2\cdot a_1 + a_2\cdot a_2 = 168b2=a0⋅a2+a1⋅a2+a2⋅a0+a2⋅a1+a2⋅a2=168 b3=a0⋅a3+a1⋅a3+a2⋅a3+a3⋅a0+a3⋅a1+a3⋅a2+a3⋅a3=440b_3 = a_0\cdot a_3 + a_1\cdot a_3 + a_2\cdot a_3 + a_3\cdot a_0 + a_3\cdot a_1 + a_3\cdot a_2 + a_3\cdot a_3 = 440b3=a0⋅a3+a1⋅a3+a2⋅a3+a3⋅a0+a3⋅a1+a3⋅a2+a3⋅a3=440 b4=a0⋅a4+a1⋅a4+a2⋅a4+a3⋅a4+a4⋅a0+a4⋅a1+a4⋅a2+a4⋅a3+a4⋅a4=496b_4 = a_0\cdot a_4 + a_1\cdot a_4 + a_2\cdot a_4 + a_3\cdot a_4 + a_4\cdot a_0 + a_4\cdot a_1 + a_4\cdot a_2 + a_4\cdot a_3 + a_4\cdot a_4 = 496b4=a0⋅a4+a1⋅a4+a2⋅a4+a3⋅a4+a4⋅a0+a4⋅a1+a4⋅a2+a4⋅a3+a4⋅a4=496 ans=1⋅b0+2⋅b1+3⋅b2+4⋅b3+5⋅b4=4985ans = 1\cdot b_0 + 2\cdot b_1 + 3\cdot b_2 + 4\cdot b_3 + 5\cdot b_4 = 4985ans=1⋅b0+2⋅b1+3⋅b2+4⋅b3+5⋅b4=4985
示例2
输入
复制
10 3 83254494 79256570 664815211 929105503 348307749 129917295 141270181 116122929 432020021 461745049
输出
复制
964655557
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <vector>
#include <ctime>
#include <cctype>
#include <bitset>
#include <utility>
#include <sstream>
#include <complex>
#include <iomanip>
#include<climits>//INT_MAX
#define PP pair<ll,int>
#define inf 0x3f3f3f3f
#define llinf 0x3f3f3f3f3f3f3f3fll
#define dinf 1000000000000.0
typedef long long ll;
using namespace std;
int const N=1e5+10;
int const mod=1e9+7;
const int maxn=1e5+10;
ll A[N],B[N],C[N];
ll ksm(ll a,ll b,ll m){
ll ans=1;
while(b){
if(b&1
)ans=(ans*a)%m;
b>>=1;
a=a*a%m;
}
return ans;
}
int main(){
ll n,m;
cin>>n>>m;
for(int i=1;i<=n;++i)
scanf("%lld",&A[i]);
for(int i=1;i<=n;++i){
B[i]=B[i-1]+A[i];
B[i]%=mod;
}
for(int i=1;i<=n;++i)
C[i]=(ksm(B[i],m,mod)-ksm(B[i-1],m,mod)+mod)%mod;
ll jg=0;
for(int i=1;i<=n;++i)
jg=(jg+i*C[i]%mod)%mod;
cout<<jg%mod<<endl;
return 0;
}
链接:https://ac.nowcoder.com/acm/problem/15817
来源:牛客网
题目描述
It’s universally acknowledged that there’re innumerable trees in the campus of HUST.
Now you're going to walk through a large forest. There is a path consisting of N stones winding its way to the other side of the forest. Between every two stones there is a distance. Let di indicates the distance between the stone i and i+1.Initially you stand at the first stone, and your target is the N-th stone. You must stand in a stone all the time, and you can stride over arbitrary number of stones in one step. If you stepped from the stone i to the stone j, you stride a span of (di+di+1+...+dj-1). But there is a limitation. You're so tired that you want to walk through the forest in no more than K steps. And to walk more comfortably, you have to minimize the distance of largest step.
输入描述:
The first line contains two integer N and K(1≤K≤N≤105)( 1\leq K\leq N \leq 10^{5})(1≤K≤N≤105) as described above.
Then the next line N-1 positive integer followed, indicating the distance between two adjacent stone(1≤ai≤105)(1 \leq a_{i}\leq 10^{5} )(1≤ai≤105).
输出描述:
An integer, the minimum distance of the largest step.
示例1
输入
复制
6 3 1 3 2 2 5
输出
复制
5
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <vector>
#include <ctime>
#include <cctype>
#include <bitset>
#include <utility>
#include <sstream>
#include <complex>
#include <iomanip>
#include<climits>//INT_MAX
#define PP pair<ll,int>
#define inf 0x3f3f3f3f
#define llinf 0x3f3f3f3f3f3f3f3fll
#define dinf 1000000000000.0
typedef long long ll;
using namespace std;
int const N=10010;
int const mod=998244353;
const int maxn=1e5+10;
ll a[100000+10],n,k;
bool jc(ll x)
{
int ct=0;
ll tmp=0;
for(int i=1;i<=n;i++)
{
if(a[i]>x)
return false;
if(a[i]+tmp<x)
tmp+=a[i];
else{
ct++;
if(tmp+a[i]==x)
tmp=0;
else
tmp=a[i];
}
}
if(tmp)
ct++;
return ct<=k;
}
int main()
{
cin>>n>>k;
n--;
for(int i=1;i<=n;i++)
cin>>a[i];
ll r=10000000010,l=0,mid,jg=0;
while(l<=r)
{
mid=(l+r)/2;
if(jc(mid))
{
jg=mid;
r=mid-1;
}
else
l=mid+1;
}
cout<<jg<<endl;
return 0;
}