15、三数之和(python)

本文介绍了一种高效算法,用于在整数数组中查找所有不重复的三元组,这些三元组的和等于零。通过排序和双指针技巧,避免了重复结果并显著提高了搜索速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有满足条件且不重复的三元组。

注意:答案中不可以包含重复的三元组。

示例:

给定数组 nums = [-1, 0, 1, 2, -1, -4],

满足要求的三元组集合为:
[
  [-1, 0, 1],
  [-1, -1, 2]
]

代码(排序+双指针):

class Solution:
    def threeSum(self, nums):
        if len(nums) < 3:                 # 若数组长度 < 3,直接返回空
            return []
        nums = sorted(nums)               # 排序
        re = []                           # 结果变量
        for i in range(len(nums)):                  # 遍历
            if nums[i] > 0:                         # 若 nums[i] > 0,则没有数字之和为0,直接返回re
                return re 
            if i > 0 and nums[i] == nums[i-1]:      # 排除重复数组
                continue
            L = i + 1                               # 左指针
            R = len(nums) - 1                       # 右指针
            while L < R:                                      # 遍历
                temp = nums[i] + nums[L] + nums[R]            # 三数之和
                if temp == 0:                                 # 若temp = 0
                    re.append([nums[i],nums[L],nums[R]])      # 添加到结果列表中
                    while L < R and nums[L] == nums[L+1]:     # 避免左指针下一个数字重复,跳过
                        L = L + 1
                    while L < R and nums[R] == nums[R-1]:     # 避免右指针下一个数字重复,跳过
                        R = R - 1
                    L = L + 1                       # 左指针右移,遍历
                    R = R - 1                       # 右指针左移,遍历
                elif temp > 0:                                # 若temp > 0
                    R = R - 1                                 # 则应该让三数之和小一些,故右指针左移
                else:                                         
                    L = L + 1                                 # 反之,应该让三数之和大一些,故左指针右移
        return re
LeetCode 上的「三数之和」问题是经典的算法题之一(通常编号为第15题)。题目描述大致是这样的: 给定一个包含 n 个整数的数组 `nums`,判断是否存在个元素 a、b 和 c ,使得 a + b + c = 0 。找出所有满足条件且不重复的元组。 --- ### 解决思路 #### 方法一:暴力枚举法 最简单的方式是对数组中的每一个组合 `(i, j, k)` 都检查是否满足条件 `nums[i] + nums[j] + nums[k] == 0`。然而这种方法的时间复杂度为 O(),效率较低,在实际应用中可能会超时。 #### 方法二:双指针优化 一种更高效的解决方案可以利用**排序+双指针**的方式来解决此问题: 1. **对输入数组进行排序**,将原无序的问题转换成有序的情况。 2. 固定第一个数字,然后通过左右两个指针对剩下的部分寻找符合条件的另外两数。 - 左右指针分别从当前固定值之后的位置开始,并逐步向中间靠拢。 - 如果发现者相的结果大于零,则移动右边的指针;如果小于零则移动左边的指针。 3. 每次找到一组解后需要跳过相同的数值以避免结果重复。 时间复杂度降低到 O() 级别。 ```python def threeSum(nums): res = [] nums.sort() # 排序方便后续处理 for i in range(len(nums)-2): if i > 0 and nums[i]==nums[i-1]: continue # 跳过重复的第一个数字 left,right=i+1,len(nums)-1 while(left < right): total=nums[i]+nums[left]+nums[right] if(total<0): left +=1 elif(total>0): right -=1 else: res.append([nums[i],nums[left],nums[right]]) while left <right and nums[left]==nums[left+1]: left+=1 while left <right and nums[right]==nums[right-1]: right-=1 left +=1 right -=1 return res ``` 上述代码即为标准答案框架示例。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值