ABC183 E - Queen on Grid(前缀和优化dp)

该博客介绍了一种使用动态规划解决网格行走问题的方法。通过建立dp数组,并利用前缀和技巧,可以在O(1)时间内进行状态转移,求出到达网格底部右下角的合法路径数。代码实现中涉及到了C++编程,包括二维数组操作和模运算,展示了如何高效地处理这类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:

在这里插入图片描述

解法:

显然令d(i,j)表示走到(i,j)的方案数。
因为题目说每一步可以向右、向下、向右下走任意格,
因此d(i,j)可以由左边、上面、左上方转移而来,
可以看作是左边的dp(,)的和,上面的dp(,)和,左上的dp(,)的和,
那么用三个前缀和sum(,)维护一下前缀和,之后就可以O(1)转移了。

code:
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int maxm=2e3+5;
const int mod=1e9+7;
int a[maxm][maxm];
int d[maxm][maxm];
int sum1[maxm][maxm];//上
int sum2[maxm][maxm];//左
int sum3[maxm][maxm];//左上
int n,m;
signed main(){
    ios::sync_with_stdio(0);cin.tie(0);
    cin>>n>>m;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            char c;cin>>c;
            if(c=='.')a[i][j]=1;
        }
    }
    d[1][1]=sum1[1][1]=sum2[1][1]=sum3[1][1]=a[1][1];
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            if(i==1&&j==1)continue;
            if(!a[i][j]){
                d[i][j]=sum1[i][j]=sum2[i][j]=sum3[i][j]=0;
                continue;
            }
            d[i][j]=(sum1[i-1][j]+sum2[i][j-1]+sum3[i-1][j-1])%mod;
            sum1[i][j]=(sum1[i-1][j]+d[i][j])%mod;
            sum2[i][j]=(sum2[i][j-1]+d[i][j])%mod;
            sum3[i][j]=(sum3[i-1][j-1]+d[i][j])%mod;
        }
    }
    cout<<d[n][m]<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值