A Convolutional Recurrent Neural Network for Real-Time Speech Enhancement

该文提出了一种卷积循环神经网络(CRN)用于实时语音增强,结合了因果卷积和LSTM,实现了噪声和说话人无关的处理。实验表明,CRN在STOI和PESQ上优于LSTM基线,并且参数更少,适用于实时应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A Convolutional Recurrent Neural Network for Real-Time Speech Enhancement

文章:A Convolutional Recurrent Neural Network for Real-Time Speech Enhancement
作者:Ke Tan, DeLiang Wang

ABSTRACT

现实生活中许多语音增强的应用都需要实时处理,最好没有延迟或者低延迟,例如助听器和人工耳蜗。本文提出了CRN的网络结构实现单通道语音增强。把CED和LSTM结合到CRN架构中,形成一个实时处理的因果系统。而且,所提出的模型中噪声与说话人无关,即噪声类型和说话人在训练集和测试集中可以是不同的,实验表明CRN比现存的LSTM模型表现出更好的PESQ和STOI。而且,CRN所需的参数更少。
关键字:噪声和说话人无关的语音增强。实时应用,CED,LSTM,CRN

Introduction

语音分离旨在将目标说话人从背景干扰噪声中分离出来,包括非语音噪声,干扰语音和房间混响。语音增强涉及到分离语音和非语音噪声,生活中有各种各样的应用,例如:鲁棒性自动语音识别和移动设备语音交流。这些都需要实时处理,换句话说,语音增强应该被表现为低计算复杂度,并且提供瞬时输出。
文章中,我们集中于可运行在实时应用中的单通道语音增强,例如,在数字助听器中,对于听的人来说,3毫秒的延迟就很明显,大于10毫秒的延迟则令人讨厌。对于这些应用,需要一个没有未来信息的因果语音增强系统。
受CASA中时频掩蔽的启发,近年来语音分离被作为监督学习任务进行研究,使用DNN来学习噪声特征到时频掩蔽的mapping。IBM是第一个在监督语音分离中使用的目标,他把时频单元归为语音域或噪声域。最近提出的训练目标包括IRM,和基于mapping的特征,对应于目标语音

### 卷积神经网络(Convolutional Neural Network, CNN)研究论文 卷积神经网络是一种专门用于处理具有网格状拓扑数据的深度学习算法,广泛应用于图像识别、视频分析以及自然语言处理等领域[^1]。以下是几篇与卷积神经网络相关的经典和前沿研究论文: #### 经典论文 1. **LeNet-5**: Yann LeCun 提出了最早的卷积神经网络之一——LeNet-5,该模型主要用于手写字符识别任务。这篇论文奠定了现代 CNN 的基础架构设计思路。 2. **AlexNet**: Alex Krizhevsky 等人在 ImageNet 大规模视觉识别挑战赛中提出了 AlexNet,这是第一个成功利用 GPU 加速训练的大规模深层 CNN 模型。它显著提高了图像分类性能并推动了深度学习的发展。 3. **VGGNet**: VGGNet 是由牛津大学 Visual Geometry Group 发表的一系列卷积层堆叠而成的简单而有效的结构。通过增加网络深度,证明更深的网络可以带来更好的表现效果。 #### 自然语言处理领域中的应用 除了计算机视觉外,在自然语言处理方面也有许多关于如何将 CNN 应用于文本数据分析的研究工作被开展出来。例如,“Understanding Convolutional Neural Networks for NLP” 这篇文章探讨了如何把一维卷积操作引入到句子建模当中去,并展示了其优越之处在于能够捕捉局部特征的同时还保持高效计算特性[^2]。 #### 实时语音增强方向上的探索 另外还有针对特定应用场景比如实时音频信号预处理方面的创新尝试。“A Convolutional Recurrent Neural Network for Real-Time Speech Enhancement” 论文中介绍了一种新颖的方法论即结合时间维度上的循环机制与空间频率轴向上传播规律共同作用于输入序列之上从而实现更佳的结果输出质量提升目标达成情况良好;具体来说就是通过对因果关系敏感度较高的部分给予特别关注进而构建起一套完整的理论框架体系支持实际工程项目落地实施过程顺利推进下去[^3]。 ```python import torch from torch import nn class SimpleCNN(nn.Module): def __init__(self): super(SimpleCNN, self).__init__() self.conv_layer = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=(3, 3)) def forward(self, x): output = self.conv_layer(x) return output ``` 上述代码展示了一个简单的二维卷积层定义方式及其前馈传播逻辑实现方法示例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值