PyTorch深度学习笔记(十七)现有网络模型的使用与修改

这篇博客介绍了如何在PyTorch的torchvision库中使用常见的预训练神经网络模型,如AlexNet、VGG、ResNet和GoogLeNet进行图像分类。作者展示了如何设置全局镜像源以加速下载,并通过实例解释了如何加载预训练的VGG16模型,调整其分类层以适应CIFAR10数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

课程学习笔记,课程链接

在现有的 torchvision 中提供了许多常见的神经网络模型,这些模型主要包括:分类、语义分割、目标检测、视频分类等类型,其中分类主要针对图像分类,包括 AlexNet、VGG、ResNet、GoogLeNet 等网络。具体情况可以参照 PyTorch 官网

 使用该数据集需安装 scipy,可用 pip list 查看是否安装(数据集 100多G,太大不适宜讲解)

 

 设置全局镜像

新建文件夹 C:\Users\Administrator\pip -> 创建文件 pip.ini -> 输入内容(亲测有效)

[global]
index-url=https://pypi.tuna.tsinghua.edu.cn/simple/
[install]
trusted-host=pypi.tuna.tsinghua.edu.cn

现有模型的使用,VGG16

import torchvision
from torch import nn
​
vgg16_false = torchvision.models.vgg16(pretrained=False)  # 未预训练
vgg16_true = torchvision.models.vgg16(pretrained=True)  # 未预训练
print(vgg16_true)
​
train_data = torchvision.datasets.CIFAR10("D:\Code\Project\learn_pytorch\pytorch_p17-21\data", train=True,
                                          transform=torchvision.transforms.ToTensor, download=True)
vgg16_true.classifier.add_module('add_linear', nn.Linear(1000, 10))
print(vgg16_true)
​
print(vgg16_false)
vgg16_false.classifier[6] = nn.Linear(4096, 10)
print(vgg16_false)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值