sklearn机器学习模型代码汇总

该博客介绍了多种机器学习模型在二分类任务中的应用,包括逻辑回归、K近邻、高斯贝叶斯、决策树、Bagging、随机森林、极端随机树、AdaBoost、GBDT、VOTE集成学习、LightGBM和XGBoost。每种模型的实现代码、训练和评估过程都有详细展示,旨在帮助读者理解不同模型的性能和适用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下模型代码均用于二分类机器学习之中。

相关参数可以在sklearn官网查询:sklearn官网

一、逻辑回归模型

from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler

stdScaler = StandardScaler()
X = stdScaler.fit_transform(train)

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, target, random_state=0)

clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(X_train, y_train)
clf.score(X_test, y_test)

二、K近邻分类模型

from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler

stdScaler = StandardScaler()
X = stdScaler.fit_transform(train)

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, target, random_state=0)

clf = KNeighborsClassifier(n_neighbors=3).fit(X_train, y_train)
clf.score(X_test, y_test)

三、高斯贝叶斯分类模型

from sklearn.naive_bayes import GaussianNB
from sklearn.preprocessing import StandardScaler

stdScaler = StandardScaler()
X = stdScaler.fit_transform(train)

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, target, random_state=0)

clf = GaussianNB().fit(X_train, y_train)
clf.score(X_test, y_test)

四、决策树分类模型

from sklearn import tree

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)

clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)
clf.score(X_test, y_test)

五、Bagging分类模型

from sklearn.ensemble import BaggingClassifier
from sklearn.neighbors import KNeighborsClassifier

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
clf = BaggingClassifier(KNeighborsClassifier(), max_samples=0.5, max_features=0.5)

clf = clf.fit(X_train, y_train)
clf.score(X_test, y_test)

六、随机森林分类模型

from sklearn.ensemble import RandomForestClassifier

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
clf = clf = RandomForestClassifier(n_estimators=10, max_depth=3, min_samples_split=12, random_state=0)

clf = clf.fit(X_train, y_train)
clf.score(X_test, y_test)

七、极端随机树分类模型

from sklearn.ensemble import ExtraTreesClassifier

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
clf = ExtraTreesClassifier(n_estimators=10, max_depth=None, min_samples_split=2, random_state=0)

clf = clf.fit(X_train, y_train)
clf.score(X_test, y_test)

八、AdaBoost模型

from sklearn.ensemble import AdaBoostClassifier

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
clf = AdaBoostClassifier(n_estimators=10)

clf = clf.fit(X_train, y_train)
clf.score(X_test, y_test)

九、GBDT模型

from sklearn.ensemble import GradientBoostingClassifier

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
clf = GradientBoostingClassifier(n_estimators=10, learning_rate=1.0, max_depth=1, random_state=0)

clf = clf.fit(X_train, y_train)
clf.score(X_test, y_test)

十、VOTE模型

from sklearn import datasets
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.preprocessing import StandardScaler

stdScaler = StandardScaler()
X = stdScaler.fit_transform(train)
y = target


clf1 = LogisticRegression(solver='lbfgs', multi_class='multinomial', random_state=1)
clf2 = RandomForestClassifier(n_estimators=50, random_state=1)
clf3 = GaussianNB()

eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard')

for clf, label in zip([clf1, clf2, clf3, eclf], ['Logistic Regression', 'Random Forest', 'naive Bayes', 'Ensemble']):
    scores = cross_val_score(clf, X, y, cv=5, scoring='accuracy')
    print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))

十一、LightGBM模型

import lightgbm

X_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)
X_test, X_valid, y_test, y_valid = train_test_split(X_test, y_test, test_size=0.5, random_state=0)

clf = lightgbm

train_matrix = clf.Dataset(X_train, label=y_train)
test_matrix = clf.Dataset(X_test, label=y_test)
params = {
          'boosting_type': 'gbdt',
          #'boosting_type': 'dart',
          'objective': 'multiclass',
          'metric': 'multi_logloss',
          'min_child_weight': 1.5,
          'num_leaves': 2**5,
          'lambda_l2': 10,
          'subsample': 0.7,
          'colsample_bytree': 0.7,
          'colsample_bylevel': 0.7,
          'learning_rate': 0.03,
          'tree_method': 'exact',
          'seed': 2017,
          "num_class": 2,
          'silent': True,
          }
num_round = 10000
early_stopping_rounds = 100
model = clf.train(params, 
                  train_matrix,
                  num_round,
                  valid_sets=test_matrix,
                  early_stopping_rounds=early_stopping_rounds)
pre= model.predict(X_valid,num_iteration=model.best_iteration)

 十二、XGBoost

import xgboost

X_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)
X_test, X_valid, y_test, y_valid = train_test_split(X_test, y_test, test_size=0.5, random_state=0)

clf = xgboost

train_matrix = clf.DMatrix(X_train, label=y_train, missing=-1)
test_matrix = clf.DMatrix(X_test, label=y_test, missing=-1)
z = clf.DMatrix(X_valid, label=y_valid, missing=-1)
params = {'booster': 'gbtree',
          'objective': 'multi:softprob',
          'eval_metric': 'mlogloss',
          'gamma': 1,
          'min_child_weight': 1.5,
          'max_depth': 5,
          'lambda': 100,
          'subsample': 0.7,
          'colsample_bytree': 0.7,
          'colsample_bylevel': 0.7,
          'eta': 0.03,
          'tree_method': 'exact',
          'seed': 2017,
          "num_class": 2
          }

num_round = 10000
early_stopping_rounds = 100
watchlist = [(train_matrix, 'train'),
             (test_matrix, 'eval')
             ]

model = clf.train(params,
                  train_matrix,
                  num_boost_round=num_round,
                  evals=watchlist,
                  early_stopping_rounds=early_stopping_rounds
                  )
pre = model.predict(z,ntree_limit=model.best_ntree_limit)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿巴乾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值