洛谷 P1157 组合输出 题解

本文介绍了洛谷P1157题目,该问题通过暴力枚举解决,要求每组输出占据3位。由于直接递归会导致数据不完整,作者提出使用数组预先存储,当数组长度达到指定值时输出并回溯的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

P1157 组合的输出

#include<iostream>
#include<iomanip>

using namespace std;

int n, r;
int a[21];
void Print(
<think>好的,我需要解决用户关于如何在Python中实现洛谷P1157组合输出问题的疑问。首先,我需要回忆这个问题的具体要求。题目是给定两个整数n和r,要求输出从1到n的所有可能中选r个数的组合,每个组合按升序排列,并且每个数字占3个字符宽度,右对齐。 接下来,用户提到的参考内容中引用了题解,其中使用了深度优先搜索(DFS)的方法。我需要确保自己理解这个方法的实现步骤。DFS通常通过递归来遍历所有可能的组合,每次选择一个数后,剩下的选择范围缩小,避免重复。例如,从1开始选择后,下一个数只能从2到n中选择,以此类推,直到选满r个数。 然后,我需要考虑如何将这个过程转化为Python代码。递归函数的设计是关键,参数应该包括当前已选择的数字列表s和下一个可选的起始位置c。当s的长度等于r时,就输出结果。否则,循环从c到n,依次将每个数加入s,并递归调用函数,起始位置更新为i+1,确保组合是升序且不重复的。 输出格式方面,每个数字需要占3个字符,右对齐,这可以通过Python的字符串格式化来实现,比如使用format函数,格式字符串为"{:>3}"。同时,每输出完一个组合后要换行,需要注意print语句的使用,默认会换行,但如果在循环中逐个输出数字,则需要在最后一个数字后换行。 还要注意代码中的细节,比如在递归调用时,应该创建新的列表而不是修改原列表,避免引用问题。例如,使用s+[i]来生成新的列表,而不是用append方法,因为append会修改原列表,可能导致错误。 用户提供的示例代码中已经有一个实现,我需要检查其正确性,并解释关键部分。比如,dfs函数接收s和c,判断长度是否满足,满足则格式化输出。循环中从c到n,递归调用时传入s+[i]和i+1,这样保证每次选择的数都比之前的大,避免重复组合。 此外,用户提到的引用[2]中的注意事项也很重要,比如不要使用s.append(i),因为这会导致返回NoneType,正确的方式是创建新列表。同时,输出格式必须使用format确保对齐正确,特别是处理两位数时占位符的宽度。 最后,需要确保代码在Python环境中能够正确运行,处理输入和输出。例如,使用input().split()获取n和r,初始化空列表ans,调用dfs(ans, 1)开始递归过程。 总结下来,步骤包括:理解问题需求,设计DFS递归结构,处理输出格式,注意列表操作的不可变性,确保输入输出的正确性。需要将这些步骤清晰地传达给用户,并解释代码的关键部分,帮助他们理解实现原理和细节。</think>在 Python 中实现洛谷 P1157组合输出问题,可以通过**深度优先搜索(DFS)**递归生成组合,并控制输出格式。以下是具体实现步骤和代码解析: --- ### 方法实现 #### 1. 输入处理 首先读取输入值 $n$ 和 $r$,定义全局变量或通过参数传递: ```python n, r = map(int, input().split()) ``` #### 2. DFS递归函数 定义递归函数 `dfs(s, c)`: - **参数说明**: - `s`:当前已选的数字列表(如 `[1, 3]`) - `c`:下一个可选数字的起始位置(保证升序排列) - **终止条件**:当 `s` 的长度等于 $r$ 时,按格式输出结果 - **递归逻辑**:遍历 $c$ 到 $n$ 的数字,依次加入当前列表并递归 ```python def dfs(s, c): if len(s) == r: print("".join(["{:>3}".format(num) for num in s])) return for i in range(c, n + 1): dfs(s + [i], i + 1) # 新建列表,避免引用问题 ``` #### 3. 调用入口 初始化空列表并启动递归: ```python ans = [] dfs(ans, 1) ``` --- ### 完整代码 ```python n, r = map(int, input().split()) def dfs(s, c): if len(s) == r: print("".join(["{:>3}".format(num) for num in s])) return for i in range(c, n + 1): dfs(s + [i], i + 1) dfs([], 1) ``` --- ### 关键点说明 1. **DFS避免重复**:每次递归选择数字时,起始位置从 `i + 1` 开始,确保组合严格升序且不重复[^2]。 2. **输出格式控制**:使用 `"{:>3}".format(num)` 实现每个数字占3字符宽度并右对齐[^2]。 3. **列表不可变性**:递归时通过 `s + [i]` 创建新列表,而非直接修改原列表,避免副作用[^2]。 --- ### 示例输出 输入 `5 3` 时,输出如下: ``` 1 2 3 1 2 4 1 2 5 ...(其余组合) 3 4 5 ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值