归一化

本文介绍了数据预处理中的归一化技术,通过将特征数值转化为0-1之间,减小特征重要性的差异。文章详细阐述了归一化的公式,并提供了Python代码实现,展示了如何对数据集进行归一化处理。通过实例展示了归一化前后的数据对比,有助于理解数据预处理在机器学习中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

归一化

使得特征数值转换为0-1之间的数值,降低特征的特征重要性差异
公式:
newValue=oldValue−minmax−min newValue = \frac{oldValue - min}{max - min} newValue=maxminoldValuemin

实现代码

def autoNorm(dataSet):
    '''
    dataSet : 样本,array类型
    数据归一化
    '''
def autoNorm(dataSet):
    '''
    dataSet : 样本,array类型
    数据归一化
    '''
    minVals = dataSet.min(axis=0)
    maxVals = dataSet.max(axis=0)
    ranges = maxVals - minVals   # 得到分母值max - min
    normDataSet = np.zeros(np.shape(dataSet))   # 构造一个数组,用来存放归一化后的特征值
    m = dataSet.shape[0]   # 获取样本数
    normDataSet = dataSet - np.tile(minVals ,(m,1))  # 得到分子上的值oldValue−min
    normDataSet = normDataSet/np.tile(ranges, (m, 1))  # 归一化后的数据
    return normDataSet, ranges, minVals
    

# 调用
a = np.random.uniform(1,20,(6,3))
print(a)
autoNorm(a)

运行结果

[[14.6099423  18.04161268 12.25492127]
 [14.50232783  9.64654342 17.23818201]
 [ 8.3023203  14.94606789 13.94815491]
 [ 1.14427536 17.33806978  3.60550385]
 [13.51703253 19.27076143  1.17823014]
 [ 3.110118    1.28159506 13.4893258 ]]
(array([[1.        , 0.93167283, 0.68970886],
        [0.99200823, 0.46499922, 1.        ],
        [0.53157745, 0.75959456, 0.79514091],
        [0.        , 0.89256358, 0.15113829],
        [0.91883731, 1.        , 0.        ],
        [0.14598925, 0.        , 0.76657114]]),
 array([13.46566694, 17.98916637, 16.05995187]),
 array([1.14427536, 1.28159506, 1.17823014]))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值