Learning Tubule-Sensitive CNNs for Pulmonary Airway and Artery-Vein Segmentation in CT

该研究提出了一种基于CNN的肺部气道和血管分割方法,特别针对细小分支。通过特征重校准和注意力蒸馏增强管状结构的学习,利用解剖先验信息改善动脉和静脉的区分。实验显示,这种方法在保持整体分割性能的同时,对微小血管有更好的敏感性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Learning Tubule-Sensitive CNNs for Pulmonary Airway and Artery-Vein Segmentation in CT

Yulei Qin

IEEE Transactions on Medical Imaging 2021

Abstract

训练卷积神经网络(CNNs)分割肺气道、动脉和静脉具有挑战性,因为管状目标和背景之间的严重类别不平衡会导致监督信号稀疏。我们提出了一种基于CNN的非对比CT精确气道和动静脉分割方法。它对纤细的周围细支气管、小动脉和小静脉具有优越的敏感性。该方法首先使用特征校准模块,以充分利用从神经网络中学习到的特征。再适当地整合特征的空间信息,保持激活区域的相对优先级,有利于后续的通道级的再校准。然后引入注意力蒸馏模块,加强管状对象的表示学习。高分辨率注意图中的细粒度细节从一层递归地传递到上一层,以丰富上下文。设计并融合了肺上下文图和距离变换图的解剖先验,以提高动静脉的区分能力。广泛的实验表明,这些组件带来了相当大的性能提升。与最先进的方法相比,我们的方法提取了更多的目标分支,同时保持了具有竞争力的整体分割性能。

Contributions

  1. 提出了一种基于小管敏感的CNN的肺气道和动静脉分割方法。该方法是首次尝试同时分割气管、动脉和静脉。文章还提出了一种融合先验空间知识的特征重校准模块,用于通道级重校准,它鼓励有区别的特征学习。
  2. 引入了一个注意力蒸馏模块来加强管状呼吸道、动脉和静脉的表征学习,不需要额外的注释工作。
  3. 通过利用肺上下文图和距离变换图作为额外的输入,将先验的显式解剖结构结合到动静脉分割中。
  4. 论文分别在110个和55个平扫CT扫描上验证了所提出的方法在肺气管和动静脉上的有效性。大量实验表明,论文的方法对细小的呼吸道、小动静脉具有更高的敏感度,同时保持了超过或有竞争力的整理分割性能。

Methods

image-20230327093040136

为了实现管状目标的有效特征学习,在CNN中引入了特征重新校准和注意力蒸馏模块,包含解剖学先验来为动静脉任务提供语义知识

1. 特征重校准

image-20230327095116561

不断强调重要区域

在训练期间,重要的气管和动静脉区域会逐渐呈现较高的权重

2. 注意力蒸馏

image-20230327102918031

为了解决严重的类不平衡导致的监督信号不足,蒸馏可以被视为另一个监督来源。

在两个连续的特征AmA_{m}AmAm+1A_{m+1}Am+1之间执行注意力蒸馏,在上采样的过程中,用高分辨率的编码特征来监督低分辨率的解码特征,因为低分辨率解码特征上采样时容易丢失小管特征,用注意力蒸馏的方法来强制上采时关注到小管特征,并且不需要额外的监督标签。

类似用标签进行深监督,但两种方法孰强孰弱还不清楚。

3. 动静脉分割的解剖学先验

image-20230327103715759

  1. 使用肺部掩码作为先验
  2. 由于肺内的肺动脉通常与气道平行,我们认为动脉与气道的接近程度可能对分割模型提供信息,以区分动脉和静脉。因此,对分割后的气道进行欧几里得距离变换,计算每个体素到其最近气道壁的距离。将计算得到的距离变换图与肺掩模相乘,以保持有效区域。有种位置编码的感觉
  3. 总结,在动脉分割之前引入了两个图作为解剖结构(见图 4):肺上下文图和距离变换图。第一个图提供了肺的额外语义知识,第二个图反映了体素与气管的接近程度。这些地图与CT子卷连接,作为分割模型的输入。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值