目录
- 前言
- 环境准备
- 创建一个springboot项目
- 实战测试
- 总结
前言
随着人工智能技术的不断演进,如何快速在Java项目中集成先进的AI能力,成为了越来越多开发者关注的焦点。
Spring官方推出的Spring AI,极大地降低了AI应用在Java生态中的集成门槛;而DeepSeek作为新兴的强大大模型平台,也迅速赢得了开发者的青睐。
本篇将以实战为核心,手把手带你用5分钟快速上手,完成Spring AI与DeepSeek在Java项目中的无缝集成,助你轻松开启AI应用开发之旅!
环境准备
- JDK 17+ :Spring Boot 3.x强制要求(执行
java -version
验证) - API密钥申请:
- 登录DeepSeek开放平台:https://platform.deepseek.com/api_keys
- 点击「创建密钥」生成
sk-
开头的API Key(仅显示一次,需保存)
创建一个springboot项目
1.输入项目信息
2.引入项目所需要的依赖 Spring Web、OpenaAI
3.下载完后 会有对应的依赖引入,这边是删减后完整的依赖
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven.compiler.encoding>UTF-8</maven.compiler.encoding>
<java.version>17</java.version>
<maven.compiler.source>17</maven.compiler.source>
<maven.compiler.target>17</maven.compiler.target>
<spring-ai-openai-spring-boot-starter.version>1.0.0-M6</spring-ai-openai-spring-boot-starter.version>
<spring-boot.version>3.4.2</spring-boot.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-openai-spring-boot-starter</artifactId>
<version>${spring-ai-openai-spring-boot-starter.version}</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.36</version>
</dependency>
</dependencies>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-dependencies</artifactId>
<version>${spring-boot.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
4.application.yml 输入deepseek申请的apikey,以及其他信息
server:
port: 8881 # 服务启动端口
spring:
application:
name: SpringAI-Demo-DeepSeek # 应用名称
ai:
openai:
# DeepSeek申请的 apikey
api-key: 【你申请的 apikey】
# DeepSeek的OpenAI式端点
base-url: https://api.deepseek.com
chat:
options:
# 配置使用的聊天模型,这里是DeepSeek V3,# 如果想切换为推理模型(DeepSeek-R1),改成 deepseek-reasoner
model: deepseek-chat
# 用来控制文本生成的随机性(创造力),值越小越严谨
temperature: 0.8
5.开发对应的接口
package com.cv.springaidemodeepseek.controller;
import org.springframework.ai.openai.OpenAiChatModel;
import org.springframework.web.bind.annotation.*;
/**
* @Description: 测试
* @Author: funnywus
* @Date: 2025/4/28 23:01
*/
@CrossOrigin(origins = "*")
@RestController
@RequestMapping("/ai")
public class AiController {
private final OpenAiChatModel openAiChatModel;
public AiController(OpenAiChatModel openAiChatModel) {
this.openAiChatModel = openAiChatModel;
}
/**
* 文本对话接口
* http://localhost:8881/ai/chat/讲一个笑话
* @param message 用户消息
* @return AI 回复
*/
@GetMapping("/chat/{message}")
public String chat(@PathVariable("message") String message) {
return this.openAiChatModel.call(message);
}
}
6.到这儿我们一个简单的AI应用已经开发完成了,最终项目结构如下
实战测试
启动服务,我们只需要在浏览器中输入:
http://localhost:8881/ai/chat/【输入给ai的对话】
示例:http://localhost:8881/ai/chat/讲一个笑话
总结
如何学习更多AI的技能
https://github.com/springaialibaba/spring-ai-alibaba-examples
此仓库中包含许多 Example 来介绍 Spring AI Alibaba 从基础到高级的各种用法和 AI 项目的最佳实践。
感兴趣的小伙伴可以自己到上面GitHub仓库看代码研究哦~🚀👀
本期内容到这儿就结束了!🎉
希望对您有所帮助,我们下期再见!👋😊