小知识点系列(二) 本文(8万字) | 解读数据增强 | Mosaic | MixUp | CutOut | CutMix | HSV | Albumentation |

142 篇文章

已下架不支持订阅

本文详细介绍了深度学习中常用的数据增强技术,包括几何变换(翻转、裁剪、旋转等)、颜色空间变换、核滤波器、图像混合和随机擦除。特别提到了第三方库albumentations,它提供了超过70种变换,包括像素级和空间级变换,以及如何与PyTorch结合使用。此外,还深入探讨了Mosaic、MixUp、CutOut、CutMix和HSV颜色空间变换等技术,这些方法有助于提高模型的泛化能力和鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击进入专栏:
《人工智能专栏》 Python与Python | 机器学习 | 深度学习 | 目标检测 | YOLOv5及其改进 | YOLOv8及其改进 | 关键知识点 | 各种工具教程


文章目录


数据增强介绍

1. 前言

这篇文章主要参考 A survey on Image Data Augmentation for Deep Learning, 总结了常用的传统扩增方法及其应用时的注意事项。这里的传统方法指不包括基于深度学习(比如 GAN)等新的扩增方法。

另外需要注意的是,虽然对于不同的任务,比如对于分类,检测任务,不同的任务在采用某一个具体的扩增方法的时候会有所不同,比如对于检测任务需要考虑对 bounding box 进行相应的操作,但是这里仅仅从扩增方法的角度来说是没有区别的。

最后, 数据扩增的具体方法非常多,而且除了各个训练框架提供的方法之外还有很多第三方库,这里仅仅是整理了一

已下架不支持订阅

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小酒馆燃着灯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值