图神经正切核

图数据的学习:

  1. 核方法
    此方法需要输入hand-crafted features
    选择适当的图核
    Weisfeiler-Lehman subtree kernel [Shervashidze et al., 2011]
    graphlet kernel [Shervashidze et al., 2009]
    random walk kernel [Vishwanathan et al., 2010, Gärtner et al., 2003].

  2. 图神经网络

  • BLOCK
    在这里插入图片描述
  • READOUT:
    在这里插入图片描述
    在这里插入图片描述

图神经正切和(Graph Neural Tangent Kernel):
在这里插入图片描述
在这里插入图片描述
Kernel Regression:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值