程序设计方法学
实例13:体育竞技分析
问题分析:
- 需求:毫厘是多少?如何科学分析体育竞技比赛?
- 输入:球员的水平
- 输出:可预测的比赛成绩
体育竞技分析:模拟N场比赛
- 计算思维:抽象+自动化
- 模拟:抽象比赛过程+自动化执行N场比赛、
- 当N越大时,比赛结果分析会越科学
自顶向下
解决复杂问题的有效方法
- 将一个总问题表达为若干个小问题组成的形式
- 使用同样方法进一步分解小问题
- 直至,小问题可以用计算机简单明了的解决
自底向上
逐步组建复杂系统的有效测试方法
- 分单元测试,逐步组装
- 按照自顶向下相反的路径操作
- 直至,系统各部分以组装的思路都经过测试和验证
代码
from random import random
def printIntro():
print("这个程序模拟两个选手A和B的某种竞技比赛")
print("程序运行需要A和B的能力值(以0到1之间的小数表示)")
def getInputs():
a = eval(input("请输入选手A的能力值(0-1):"))
b = eval(input("请输入选手B的能力值(0-1):"))
n = eval(input("模拟比赛的场次:"))
return a,b,n
def printSummary(winsA,winsB):
n = winsA + winsB
print("竞技分析开始,共模拟{}场比赛".format(n))
print("选手A获胜{}场比赛,占比{:0.1%}".format(winsA,winsA/n))
print("选手B获胜{}场比赛,占比{:0.1%}".format(winsB,winsB/n))
def gameOver(a,b):
return a==15 or b==15
def simOneGame(probA,probB):
scoreA, scoreB = 0, 0
serving = "A"
while not gameOver(scoreA,scoreB):
if serving == "A":
if random() < probA:
scoreA += 1
else:
serving = "B"
else:
if random() < probB:
scoreB += 1
else:
serving = "A"
return scoreA,scoreB
def simNGames(n,probA,probB):
winsA,winsB = 0,0
for i in range(n):
scoreA, scoreB = simOneGame(probA,probB)
if scoreA > scoreB:
winsA += 1
else:
winsB += 1
return winsA,winsB
def main():
printIntro()
probA,probB,n = getInputs()
winsA,winsB = simNGames(n,probA,probB)
printSummary(winsA,winsB)
main()
理解自顶向下和自底向上
- 理解自顶向下的设计思维:分而治之
- 理解自底向上的执行思维:模块化集成
- 自顶向下是“系统”思维的简化
Python程序设计思维
计算思维与程序设计
计算思维
第三种人类思维特征
- 逻辑思维:推理和演绎,数学为代表,A -> B B -> C A -> C
- 实证思维:实验和验证,物理为代表,引力波<-实验
- 计算思维:设计和构造,计算机为代表,汉诺塔递归
抽象和自动化
- 计算思维:Computational Thinking
- 抽象问题的计算过程,利用计算机自动化求解
- 计算思维是基于计算机的思维方式
抽象问题的计算过程,利用计算机自动化求解
- 计算思维基于计算机强大的算力及海量数据
- 抽象计算过程,关注设计和构造,而非因果
- 以计算机程序设计为实现的主要手段
编程是将计算思维变成现实的手段
计算生态与Python语言
开源思想深入演化和发展,形成了计算生态
计算生态以开源项目为组织形式,充分利用“共识原则”和“社会利他”组织人员,在竞争发展、相互依存和迅速更迭中完成信息技术的更新换代,形成了技术的自我演化路径。
没有顶层设计,以功能为单位,具备三个特点
- 竞争发展
- 相互依存
- 迅速更迭
- 库之间相互关联使用,依存发展,python库间广泛联系,逐级封装
- 社区庞大,新技术更迭迅速,AlphaGo深度学习算法采用python语言开源
计算生态的价值
**创新:跟随创新、集成创新、原始创新
- 加速科技类应用创新的重要支撑
- 发展科技产品商业价值的重要模式
- 国家科技体系安全和稳固的基础
计算生态的运用
刀耕火种 -> 站在巨人的肩膀上
- 编程的起点不是算法而是系统
- 编程如同搭积木,利用计算生态为主要模式
- 编程的目标是快速解决问题
用户体验以及软件产品
用户体验
实现功能 -> 关注体验
- 用户体验指用户对产品建立的主观感受和认识
- 关心功能实现,更要关心用户体验,才能做出好产品
- 编程只是手段,不是目的,程序最终为人类服务
提高用户体验的方法
方法1:进度展示
- 如果程序需要计算时间,可能产生等待,请增加进度展示
- 如果程序有若干步骤,需要提示用户,请增加进度展示
- 如果程序可能存在大量次数的循环,请增加进度展示
方法2:异常处理 - 当获得用户输入,对合规性需要检查,需要异常处理
- 当读写文件时,对结果进行判断,需要异常处理
- 当进行输入输出时,对运算结果进行判断,需要异常处理
其他类方法 - 打印输出:特定位置,输出程序运行的过程信息
- 日志文件:对程序异常及用户使用进行定期记录
- 帮助信息:给用户多种方式提供帮助信息
基本的程序设计模式
从IPO开始
- I:Input输入,程序的输入
- P:Process处理,程序的主要逻辑
- O:Output输出,程序的输出
- 确定IPO:明确计算部分及功能边界
- 编写程序:将计算求解的设计变成现实
- 调试程序:确保程序按照正常逻辑能正确运行
模块化设计
-
通过函数或对象封装将程序划分为模块及模块间的表达
-
具体包括:主程序、子程序和子程序间的关系
-
分而治之:一种分而治之、分层抽象、体系化的设计思想
-
紧耦合:两个部分之间交流很多,无法独立存在
-
松耦合:两个部分之间交流很少,可以独立存在
-
模块内部紧耦合、模块之间松耦合
配置化设计
- 引擎+配置:程序执行和配置分离,将可选参数配置化
- 将程序开发变成配置文件编写,扩展功能而不修改程序
- 关键在于接口设计,清晰明了、灵活可扩展
应用开发的四个步骤
从应用需求到软件产品
- 1.产品定义:对应用需求充分理解和明确定义,产品定义而不仅时功能定义,要考虑商业模式
- 2.系统架构:以系统方式思考产品的技术实现,系统架构,关注数据流、模块化、体系架构
- 3.设计与实现:结合架构完成关键设计及系统实现,结合可扩展性、灵活性等进行设计优化
- 4.用户体验:从用户角度思考应用效果,用户至上,体验优先,以用户为中心
Python第三方库安装
看见更大的Python世界
Python社区:
https://pypi.org/
三种方法
- 方法1(主要方法):使用pip命令
- 方法2:集成安装方法
- 方法3:文件安装方法
第三方库的pip安装方法
使用pip安装工具(命令行下执行)
第三方库的集成安装方法
第三方库的文件安装方法
模块:OS库的使用
os库基本介绍
os库提供通用的、基本的操作系统交互功能
- 路径操作:os.path子库,处理文件路径及信息
- 进程管理:启动系统中其他程序
- 环境参数:获得系统软硬件信息等环境参数
os库之路径操作
os.path子库以path为入口,用于操作和处理文件路径
os库之进程管理
os.system(command)
- 执行程序或命令command
- 在Windows系统中,返回值为cmd的调用返回信息
例如:
os库之环境参数
获取或者改变系统环境信息
实例14:第三方库安装脚本
“第三方库安装脚本”问题分析
第三方库自动安装脚本
- 需求:批量安装第三方库需要人工干预,能否自动安装?
- 自动执行pip逐一根据安装需求安装
“第三方库安装脚本”实例解析
#BachInstall.py
import os
libs = {"numpy","matplotlib","pillow","sklearn","requests",\
"jieba","beautifulsoup4","wheel","networkx","sympy",\
"pyinstaller","django","flask","werobot","pyqt5",\
"pandas","pyopengl","pypdf2","docopt","pygame"}
try:
for lib in libs:
os.system("pip install " + lib)
print("Succseeful")
except:
print("Failed")
“第三方库安装脚本”举一反三
自动化脚本+
- 编写各类自动化运行程序的脚本,调用已有程序
- 扩展应用:安装更多第三方库,增加配置文件
- 扩展异常检测:捕获更多异常类型,程序更稳定友好