干饭王也敲代码
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
yolov8改进|MobileNetV3替换Backbone,轻量化!!!
各位哥哥姐姐弟弟妹妹大家好,我是干饭王刘姐,主业干饭,主业2.0计算机研究生在读。和我一起来改进yolov8变身计算机大牛吧!本文中的论文笔记都是刘姐亲自整理,原创整理哦~原创 2025-03-09 10:50:13 · 290 阅读 · 0 评论 -
yolov8改进|MobileNetV4替换Backbone,轻量化!!
将核心代码放入中,新建MobileNetV4.py修改1.导入模块2.添加代码3.添加将代码修改为在用法里面,修改为:原创 2025-03-09 10:33:08 · 273 阅读 · 0 评论 -
yolov8改进|替换主干网络为MobileNetV3
MobileNetV3 通过硬件感知网络架构搜索 (NAS) 与 NetAdapt 算法相结合,然后通过新颖的架构进步进行改进。本文开始探索自动搜索算法和网络设计如何协同工作,以利用互补方法提高整体技术水平。本文的目标是开发最佳的移动计算机视觉架构,优化移动设备上的 accuracy-latency 权衡。引入了 (1) 互补搜索技术,(2) 适用于移动设置的新有效非线性版本,(3) 新的高效网络设计,(4) 新的高效分割解码器。原创 2024-10-14 10:48:01 · 623 阅读 · 0 评论 -
yolov8改进|引入ScConv,轻量化网络
利用特征之间的空间和通道冗余进行 CNN 压缩,并提出了一种高效的卷积模块,称为 SCConv(空间和通道重建卷积),以减少冗余计算并促进代表性特征学习。SCConv 是一种即插即用的架构单元,可用于直接替换各种卷积神经网络中的标准卷积。实验结果表明,SCConv 嵌入式模型能够通过减少冗余特征来实现更好的性能,从而显著降低复杂性和计算成本。原创 2024-09-18 19:44:01 · 637 阅读 · 0 评论 -
yolov8改进|检测头改进:全网最详细最全最强的DyHead改进,大幅度涨点
各位哥哥姐姐弟弟妹妹大家好,我是干饭王刘姐,主业干饭,主业2.0计算机研究生在读。和我一起来改进yolov8变身计算机大牛吧!本文中的论文笔记都是刘姐亲自整理,原创整理哦~原创 2024-05-29 14:23:16 · 4167 阅读 · 0 评论 -
yolov8改进|改进检测头:Partial_C_Detect
将有Detect的位置后面加入Detect_improve。原创 2024-05-28 11:27:19 · 772 阅读 · 2 评论 -
yolov8改进|注意力机制:BiFormer
修改将核心代码放入声明修改 找到def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)插入原创 2024-05-19 15:07:20 · 1370 阅读 · 0 评论 -
yolov8改进|Neck改进:增加小目标检测头
在标准目标检测中,数据集中有小目标的情况下,小目标会出现漏检或检测效果不佳等问题。YOLO默认有3个检测头,能够多尺度对目标行检测其检测尺寸分别是:P3/8 对应的检测特征图大小为80X80,用于检测大小在8X8以上的目标。P4/16对应的检测特征图大小为40X40,用于检测大小在16X16以上的目标。P5/32对应的检测特征图大小为20X20,用于检测大小在32X32以上的目标。但对微小目标检测可能存在检测能力不佳的现象,因此添加一个微小物体的检测头,在有小目标数据集中能够有涨点。原创 2024-05-19 11:09:57 · 1864 阅读 · 0 评论 -
yolov8改进|SPPF改进:将LSKA注意力引入SPPF
遥感技术在森林火灾管理中的应用可以分为几个关键阶段,主要包括预防、监测、扑救和灾后评估。预防阶段森林火灾风险分析:利用遥感数据(如卫星图像和航空摄影)分析森林类型、植被密度、地形、气候模式等,评估潜在的火灾风险区域。植被状况监测:通过遥感技术监测植被的健康状况和干旱程度,预测可能引发火灾的干燥区域。火灾预警系统:结合遥感数据和其他传感器(如热红外传感器),建立早期火灾预警系统,及时发现异常热点。监测阶段火灾检测:使用遥感技术(如卫星遥感、无人机监测)实时或近实时地检测火灾发生的位置、范围和强度。原创 2024-05-18 20:30:20 · 1555 阅读 · 0 评论 -
改进yolov8|注意力机制:GAM
修改将核心代码复制到此文件在上方声明修改文件原创 2024-05-18 19:44:21 · 182 阅读 · 0 评论 -
改进yolov8|注意力机制:CoTAttention
将核心代码放入后面在中在下面加入原创 2024-05-15 21:41:23 · 640 阅读 · 0 评论 -
从0开始超详细最全超强yolov8深度学习环境搭建(Anaconda+Pytorch+Pycharm)
各位哥哥姐姐弟弟妹妹大家好,我是干饭王刘姐,主业干饭,主业2.0计算机研究生在读。和我一起来改进yolov8变身计算机大牛吧!本文中的论文笔记都是刘姐亲自整理,原创整理哦~换了新的显卡组了新电脑,重新安装深度学习环境啦!原创 2024-05-14 13:42:18 · 1102 阅读 · 1 评论 -
改进yolov8|BackBone改进:PWConv、FasterNeXt替换yolov8主干网络
各位哥哥姐姐弟弟妹妹大家好,我是干饭王刘姐,主业干饭,主业2.0计算机研究生在读。和我一起来改进yolov8变身计算机大牛吧!本文中的论文笔记都是刘姐亲自整理,原创整理哦~原创 2024-05-17 13:19:53 · 650 阅读 · 0 评论 -
改进yolov8|损失函数改进:EfficiCIoU-Loss
EfficiCIoU-Loss结合了EfficientDet中提出的CloU和GIoU。原创 2024-05-16 16:53:50 · 1367 阅读 · 0 评论 -
改进yolov8|Conv改进:AKConv!!效果翻倍!!
将核心代码放到后面并在上方声明AKConv修改:原创 2024-05-15 16:01:17 · 1234 阅读 · 0 评论 -
改进yolov8|Neck改进:GSConv+Slim-Neck,精度参数量双改进
改进yolov8|Neck改进:Slim-Neck,精度参数量双改进一、Slim-Neck简介论文地址代码地址论文内容(原创整理)前述主要贡献具体改进过程核心代码(添加到ultralytics/nn/modules/conv.py)在ultralytics/nn/modules/conv.py中最上方“all”中引用'VoVGSCSP', 'VoVGSCSPC', 'GSConv'ultralytics/nn/modules/init.py中在 ultralytics/nn/tasks.py 上方在pars原创 2024-05-12 17:27:20 · 5372 阅读 · 15 评论 -
改进yolov8|FasterNet替换主干网络,跑得飞快!!
时间提高巨大50%+,GFLOPs减少60%+并在ultralytics/nn/modules/block.py中最上方“all”中引用‘BasicStage’, ‘PatchEmbed_FasterNet’, ‘PatchMerging_FasterNet’在ultralytics/nn/modules/init.py中在 ultralytics/nn/tasks.py 上方在parse_model解析函数中添加如下代码:和原创 2024-05-10 11:18:47 · 4972 阅读 · 23 评论