PAT甲级——1103 Integer Factorization (DFS)

博客围绕正整数N的K - P分解问题展开,即把N写成K个正整数的P次方和。需找出因子和最大、字典序大的结果。采用DFS思想,建立数组储存1到m的P次方,通过递归求解,递归时保证字典序,避免多余筛选操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1103 Integer Factorization (30 分)

The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.

Input Specification:

Each input file contains one test case which gives in a line the three positive integers N (≤400), K (≤N) and P (1<P≤7). The numbers in a line are separated by a space.

Output Specification:

For each case, if the solution exists, output in the format:

N = n[1]^P + ... n[K]^P

where n[i] (i = 1, ..., K) is the i-th factor. All the factors must be printed in non-increasing order.

Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 12​2​​+4​2​​+2​2​​+2​2​​+1​2​​, or 11​2​​+6​2​​+2​2​​+2​2​​+2​2​​, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a​1​​,a​2​​,⋯,a​K​​ } is said to be larger than { b​1​​,b​2​​,⋯,b​K​​ } if there exists 1≤L≤K such that a​i​​=b​i​​ for i<L and a​L​​>b​L​​.

If there is no solution, simple output Impossible.

Sample Input 1:

169 5 2

Sample Output 1:

169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2

Sample Input 2:

169 167 3

Sample Output 2:

Impossible

题目大意:将一个正整数N分解成K个正整数的P次方和,在多个结果里面找出因子之和最大的,若因子之和相同,字典序大的为答案。

思路:主要是DFS的思想,建立一个数组F,用来储存 1~m的P次方,m^P为≤N的最大正整数。find()里面传入四个变量,n为当前find()里面的for循环次数;cnt初始值为K,cnt=0作为递归的边界;tmpSum储存因子之和;sum是总和,sum=N才是符合条件的备选答案~

下一层的递归里的n总是小于等于上一层递归里的n,所以保证了字典序,不需要画蛇添足地写compera函数来筛选答案了(一开始就是因为这个操作导致测试点2答案错误),若无必要,勿增操作。

#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
int N, K, P, m, fSum = -1;
vector <int> ans, F, tmpA;
void find(int n,int cnt, int tmpSum, int sum);

int main()
{
	scanf("%d%d%d", &N, &K, &P);
	int i = 1;
	F.push_back(0);
	while (1) {
		int x = pow(i, P);
		if (x > N)
			break;
		else {
			F.push_back(x);
			i++;
		}
	}
	m = F.size() - 1;
	find(m, K, 0, 0);
	if (ans.empty()) {
		printf("Impossible\n");
		return 0;
	}
	printf("%d =", N);
	for (int i = 0; i < K; i++) {
		printf(" %d^%d", ans[i], P);
		if (i < K - 1) {
			printf(" +");
		}
	}
	printf("\n");
	return 0;
}
void find(int n, int cnt, int tmpSum, int sum) {
    if(n==0) return;
	if (cnt == 0) {
		if (fSum < tmpSum) {
			if (sum == N) {
				ans = tmpA;
				fSum = tmpSum;
			}
		}
		return;
	}
	for (int i = n; i > 0; i--) {
		if (sum <= N) {
			tmpA.push_back(i);
			find(i, cnt - 1, tmpSum + i, sum + F[i]);
			tmpA.pop_back();
		}
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值