简单相关系数的计算
数理相关知识
对于连续无序变量x、y,计算其相关性通常采用皮尔森相关系数,其表达式为
ρ = c o v ( x , y ) v a r ( x ) v a r ( y ) = σ x y σ x 2 σ y 2 \rho=\frac{cov(x, y)}{\sqrt{var(x)var(y)}}=\frac{\sigma_{xy}}{\sqrt{\sigma_x^{2}\sigma_y^{2}}} ρ=var(x)var(y)cov(x,y)=σx2σy2σxy
在实际操作中,总体的方差标准差、两个变量间的协方差并不是已知,而是未知,所以通常利用样本的Pearson相关系数:
r = s x y s x 2 s y 2 = ∑ ( x − x ‾ ) ( y − y ‾ ) ∑ ( x − x ‾ ) 2 ( y − y ‾ ) 2 r=\frac{s_{xy}}{\sqrt{s_x^{2}s_y^{2}}}=\frac{\sum{(x-\overline x)(y-\overline y)}}{\sqrt{\sum{(x-\overline x)^{2}(y-\overline y)^{2}}}} r=sx2sy2 </