结合R语言学习多元统计分析1——相关系数及其检验

本文介绍了如何使用R语言进行简单和多元相关系数的计算,包括皮尔森相关系数的数理知识和代码实现。此外,还讨论了相关系数的假设检验,提供了t检验的步骤及R语言的实现方法。最后通过一个实际案例展示了在保险业应用相关系数分析的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简单相关系数的计算

数理相关知识

对于连续无序变量x、y,计算其相关性通常采用皮尔森相关系数,其表达式为
ρ = c o v ( x , y ) v a r ( x ) v a r ( y ) = σ x y σ x 2 σ y 2 \rho=\frac{cov(x, y)}{\sqrt{var(x)var(y)}}=\frac{\sigma_{xy}}{\sqrt{\sigma_x^{2}\sigma_y^{2}}} ρ=var(x)var(y) cov(x,y)=σx2σy2 σxy
在实际操作中,总体的方差标准差、两个变量间的协方差并不是已知,而是未知,所以通常利用样本的Pearson相关系数:
r = s x y s x 2 s y 2 = ∑ ( x − x ‾ ) ( y − y ‾ ) ∑ ( x − x ‾ ) 2 ( y − y ‾ ) 2 r=\frac{s_{xy}}{\sqrt{s_x^{2}s_y^{2}}}=\frac{\sum{(x-\overline x)(y-\overline y)}}{\sqrt{\sum{(x-\overline x)^{2}(y-\overline y)^{2}}}} r=sx2sy2 </

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值