题目
本题要求编写程序,计算 2 个有理数的和、差、积、商。
输入格式:
输入在一行中按照 a1/b1 a2/b2
的格式给出两个分数形式的有理数,其中分子和分母全是整型范围内的整数,负号只可能出现在分子前,分母不为 0。
输出格式:
分别在 4 行中按照 有理数1 运算符 有理数2
= 结果 的格式顺序输出 2 个有理数的和、差、积、商。注意输出的每个有理数必须是该有理数的最简形式 k a/b
,其中 k
是整数部分,a/b
是最简分数部分;若为负数,则须加括号;若除法分母为 0,则输出 Inf
。题目保证正确的输出中没有超过整型范围的整数。
输入样例 1:
2/3 -4/2
输出样例 1:
2/3 + (-2) = (-1 1/3)
2/3 - (-2) = 2 2/3
2/3 * (-2) = (-1 1/3)
2/3 / (-2) = (-1/3)
输入样例 2:
5/3 0/6
输出样例 2:
1 2/3 + 0 = 1 2/3
1 2/3 - 0 = 1 2/3
1 2/3 * 0 = 0
1 2/3 / 0 = Inf
AC代码
- 麻烦麻烦麻烦真的麻烦
- 先写了简洁版的,各种格式出问题,哪哪都有细节没考虑。最后重写,使用
ctrl+c
和ctrl+v
大法,终于AC了。 - 遇到这种问题就该慢慢写,总结规律什么的都是浪费时间,干就完事儿了。对于各种限制条件,一步一步来排除。先把人类一般不会遇到的特殊情况处理了,最后处理常规情况。
- 运算过程中整型数可能会溢出(分母通分,分子相加),使用long long类型
- 不能使用abs()函数求绝对值,测试点3和测试点4报错。
- 做这种题目最重要的还是要有条理,可以代码可以写长点,追求简短很容易漏掉一些特殊情况。四则运算没必要进行统一输出,何况运算方法都不一样,复制粘贴分别输出其实工作量真不大。之前用for循环统一输出,还写了四个函数。还是直接分别写在main函数里畅快一点。
#include<stdio.h>
long long gcd(long long m,long long n){
//辗转相除法求最大公约数//也可用更相减损术
return n?(gcd(n,m%n))