pytorch学习(5)logistic 回归

本文深入解析回归和分类问题的本质区别,回归预测连续数值,而分类预测离散类别。重点介绍了logistic回归及其激活函数——sigmoid函数,解释了其取值范围及饱和特性。此外,还探讨了二分类损失函数(BCELoss)的应用。

回归和分类问题,例如:回归得到的结果域是R,而分类则是几个类别对应的概率(比较浅显的小例子)

logistic 回归函数的激活函数为sigmoid函数:

                                             

logistic函数的取值是[0,1]。

sigmoid function的一个重要特点是函数当超过某个点时,会趋于饱和状态,logistic函数就是其中一个典例。

如果之后在文章中看到,则一般代表的鸡就说是logistic函数,对应的取值范围为[0,1]。

二分类的损失函数(Loss Function for Binary Classification,BCE Loss):

                                               

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值