我在北国不背锅
致力于AI大模型、Java、大数据、运维及各类计算机技术为一体的知识架构
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
将LangGraph4j开发的Agent智能体封装成MCP服务(附源码)
所谓“将智能体封装为 MCP 服务”,是指将一个已经具备自主决策、任务规划、记忆管理、工具调用等功能的智能体系统,通过标准化接口包装为符合 MCP 协议的服务模块。这样,该智能体即可作为 MCP 网络中的一个独立节点,对外提供能力调用、资源访问、上下文交互等功能。原创 2025-07-24 09:51:08 · 612 阅读 · 0 评论 -
(5)LangGraph4j框架ReActAgent实现
ReAct-Agent 是一种大模型应用中的智能体架构。ReAct 是 Re (Reasoning,推理)和 Act(Action,行动)两个单词的简写,用通俗的话来说,它可以让大模型像人一样“思考”和“行动”,实现更强的任务处理能力。原创 2025-07-14 19:19:05 · 344 阅读 · 0 评论 -
(4)LangGraph4j框架的人工干预(Human-in-Loop)
Human-in-Loop”功能是LangGraph4j的核心亮点之一。该功能允许在工作流的任何点引入人工干预,从而实现对模型输出的验证、更正或附加上下文。这种设计特别适用于大型语言模型(LLM)驱动的应用程序,因为这些模型的输出有时可能需要人工的进一步确认或调整。通过实现NodeAction接口,可以自定义节点的行为。在这个接口的apply方法中,可以根据当前的状态决定是否需要中断流程,并且可以在中断前后对状态进行更新。原创 2025-07-14 18:20:56 · 280 阅读 · 0 评论 -
(3)LangGraph4j框架入门
langgraph4j 是一个专为Java设计的库,它支持开发者构建状态ful、多智能体应用,并能够与语言模型(LLMs)无缝集成。这个项目是对LangChain AI项目中的LangGraph的Java版本移植,旨在为Java开发者提供一种更加直观和易于使用的方式来构建复杂的智能体交互图。原创 2025-07-11 11:32:05 · 768 阅读 · 0 评论 -
(2)大模型Agent智能体设计范式
在2024年红杉资本人工智能峰会上,著名的人工智能专家吴恩达发表了一场备受关注的演讲,深入探讨了智能代理(agent)的四大范式。这四大范式代表了当前AI技术在不同应用领域中的核心方法和实践,分别是反思(Reflection)、工具使用(Tool Use)、规划(Planning)和多代理协作(Multi-Agent)。原创 2025-07-11 10:51:44 · 88 阅读 · 0 评论 -
(1)什么是AI智能体
智能体(Agent)是一个具备环境感知、决策制定及动作执行能力的自主算法系统。研发智能体的初衷在于模拟人类或其他生物的智能行为,旨在自动化地解决问题或执行任务。然而,传统智能体技术面临的主要挑战是它们通常依赖于启发式规则或受限于特定环境约束,很大程度上限制了它们在开放和动态场景中的适应性与扩展性。由于大语言模型在解决复杂任务方面展现出来了非常优秀的能力,越来越多的研究工作开始探索将大语言模型作为智能体的核心组件,以提高智能体在开放领域和动态环境中的性能。原创 2025-07-11 10:48:03 · 67 阅读 · 0 评论