- 博客(161)
- 资源 (13)
- 收藏
- 关注
原创 大模型入门学习策略(附思维导图)
在开始学习大模型之前,首先要明确自己的学习目标。是为了从事相关职业,还是为了解决实际问题,亦或是单纯的兴趣爱好?明确目标后,可以更有针对性地进行学习。例如,如果你想从事大模型工程师的职业,那么就需要系统地学习大模型的理论知识和实践技能;如果你是为了使用大模型解决某个具体问题,那么可以重点学习与该问题相关的模型和算法。
2025-02-08 15:05:39
885
原创 机器学习入门学习策略(附完整思维导图)
在开始学习机器学习之前,首先要明确自己的学习目标。是为了从事相关职业,还是为了解决实际问题,亦或是单纯的兴趣爱好?明确目标后,可以更有针对性地进行学习。例如,如果你想从事机器学习工程师的职业,那么就需要系统地学习机器学习的理论知识和实践技能;如果你是为了使用机器学习解决某个具体问题,那么可以重点学习与该问题相关的算法和模型。
2025-02-08 14:40:39
1000
原创 机器学习:定义、原理、应用与未来(万字总结)
机器学习的未来充满了机遇和挑战。随着技术的不断进步和应用的不断拓展,机器学习将在更多领域发挥重要作用,为人类的发展和进步做出更大的贡献。我们也需要积极应对机器学习发展过程中面临的挑战,确保其健康、可持续发展。通过不断探索和创新,机器学习有望为人类创造更加美好的未来。
2025-02-08 14:26:51
1687
原创 MATLAB聚类及给无标签数据加标签
然后使用kmeans函数进行聚类,将数据集划分为两个簇。聚类是一种无监督学习方法,用于将数据集划分为几个不同的组或簇,使得同一组中的数据项具有相似性,而不同组之间的数据项具有差异性。MATLAB是一种广泛使用的编程语言和开发环境,可用于实现各种机器学习算法,包括聚类算法。其中,data是输入数据,k是要划分的簇的数量。该函数返回两个输出:cluster_idx是一个n×1的向量,表示每个数据点的簇标签;cluster_center是一个k×p的矩阵,表示每个簇的中心点。
2023-12-30 15:09:32
1233
原创 使用python中的1DCNN进行数据分类预测
在上述代码中,你需要根据你的数据形式和任务需求进行适当的修改。可以调整1D卷积层和全连接层的参数、添加更多的Conv1D层或其他类型的层,以及尝试不同的优化器和损失函数。这个示例可以帮助你开始使用1DCNN进行数据分类预测,你可以根据实际情况进行进一步的修改和优化。在Python中使用1D卷积神经网络(1DCNN)进行数据分类预测可以使用深度学习库例如TensorFlow和Keras来实现。
2023-07-21 09:43:33
1909
3
原创 使用matlab中的1DCNN进行数据分类预测
在Matlab中使用1D卷积神经网络(1DCNN)进行数据分类预测是很常见的任务。准备数据:将你的输入数据整理成适合1DCNN的输入格式。通常,输入数据是一个矩阵,其中每行表示一个样本,每列表示样本的不同特征或时间点。上述代码中,你需要根据你的数据形式和任务需求进行适当的修改。还可以尝试不同的网络结构、训练选项和参数调整,以获得更好的性能。将训练数据集、测试数据集、网络结构和训练选项作为输入。配置训练选项:设置训练选项,包括优化算法、学习率、迭代次数等。预测和评估:使用已训练的模型对新数据进行分类预测。
2023-07-21 09:41:45
3019
1
原创 使用matlab里的集成树进行数据回归预测
请注意,这只是一个简单的示例,您可以根据您的具体需求进行更复杂的数据回归预测。MATLAB还提供了其他的集成学习方法,如随机森林(Random Forests)和梯度提升(Gradient Boosting),可以根据需要进行尝试和比较。当使用MATLAB时,您可以使用集成学习方法中的决策树来进行数据回归预测。决策树回归是一种基于树状结构的机器学习算法,它通过对训练数据进行分层次的决策来进行预测连续值的输出。在上述示例中,我们首先创建了一个包含输入特征的数据集X和相应的连续输出Y。
2023-07-18 20:52:41
1606
1
原创 使用matlab里的集成树进行数据分类预测
请注意,这只是一个简单的示例,您可以根据您的具体需求进行更复杂的数据分类预测。MATLAB还提供了其他的集成学习方法,如随机森林(Random Forests)和梯度提升(Gradient Boosting),可以根据需要进行尝试和比较。当使用MATLAB时,您可以使用集成学习方法中的决策树来进行数据分类预测。决策树是一种基于树状结构的机器学习算法,它通过对训练数据进行分层次的决策来进行预测。在上述示例中,我们首先创建了一个包含一些输入特征的数据集X和相应的类标签Y。函数来训练一个决策树分类器。
2023-07-18 20:51:02
1336
原创 使用matlab里的神经网络进行数据回归预测
使用MATLAB的Neural Network Toolbox,可以创建一个适合你的问题的神经网络模型。选择合适的网络结构,并设置每个层的节点数和激活函数。首先,准备用于训练和测试神经网络的数据集。确保数据已经进行了适当的预处理和标准化。通过以上步骤,你可以使用MATLAB中的神经网络进行数据回归预测。请根据你的具体问题和数据进行相应的调整和修改。输入待预测的特征数据,将得到的预测结果作为连续值进行回归预测。函数创建一个适用于回归问题的神经网络,并使用。使用训练好的神经网络模型,通过。函数对模型进行训练。
2023-07-17 09:47:55
4531
原创 使用python里的神经网络进行数据回归预测
在Python中使用神经网络进行数据回归预测,你可以使用深度学习库如TensorFlow、Keras或PyTorch来实现。使用Keras库,可以创建一个适合你的问题的神经网络模型。编译模型,并使用训练数据对模型进行训练。使用训练好的神经网络模型,可以使用预测函数进行数据回归预测。输入待预测的特征数据,将得到的预测结果作为连续值进行回归预测。通过以上步骤,你可以使用Python中的神经网络进行数据回归预测。请根据你的具体问题和数据进行相应的调整和修改。首先,准备用于训练和测试神经网络的数据集。
2023-07-17 09:46:09
2812
原创 使用python里的神经网络进行数据分类预测
在Python中使用神经网络进行数据分类预测,可以使用深度学习库如TensorFlow、Keras或PyTorch来实现。使用Keras库,可以创建一个适合你的问题的神经网络模型。编译模型,并使用训练数据对模型进行训练。使用训练好的神经网络模型,可以使用预测函数进行数据分类预测。输入待预测的特征数据,将得到的预测结果与真实类别进行比较。首先,准备用于训练和测试神经网络的数据集。通过以上步骤,你可以使用Python中的神经网络进行数据分类预测。请根据你的具体问题和数据进行相应的调整和修改。
2023-07-16 11:06:31
3805
原创 使用matlab里的神经网络进行数据分类预测
使用MATLAB的Neural Network Toolbox,可以创建一个适合你的问题的神经网络模型。选择合适的网络结构,并设置每个层的节点数和激活函数。首先,准备用于训练和测试神经网络的数据。将数据集分为输入特征和相应的目标类别。确保数据已经进行了适当的预处理和标准化。通过以上步骤,你可以使用MATLAB中的神经网络进行数据分类预测。请根据你的具体问题和数据进行相应的调整和修改。函数进行数据分类预测。输入待预测的特征数据,将得到的预测结果与真实类别进行比较。使用训练好的神经网络模型,通过。
2023-07-16 11:05:31
1975
原创 使用matlab给信号添加某一信噪比的噪声
运行上述代码,你将会看到一个显示原始信号和添加噪声后的信号的图表,噪声的信噪比为10dB。你可以根据需要修改信噪比值来观察不同信噪比下的效果。函数给信号添加高斯白噪声来实现给矩阵信号添加特定信噪比的噪声,并使用。函数可视化添加噪声前后的信号。在MATLAB中,你可以使用。
2023-07-15 09:46:42
7255
原创 使用python给信号添加某一信噪比的噪声
要给信号添加特定的信噪比的噪声,你可以先计算信号的功率,然后根据信噪比和信号功率计算噪声功率,最后随机生成符合噪声功率的高斯噪声。运行上述代码,你将会看到一个显示原始信号和添加噪声后的信号的图表,噪声的信噪比为10dB。你可以根据需要修改信噪比值来观察不同信噪比下的效果。
2023-07-15 09:44:52
2784
原创 使用python中的SVM进行数据回归预测
这样,你就可以使用支持向量机(SVM)模型进行数据回归预测了。记得根据实际问题对SVM的参数进行调优,例如调整核函数类型、正则化参数等。参数指定了核函数的类型,rbf表示径向基核函数,你也可以根据需要选择其他核函数。你需要准备你的特征矩阵X和目标变量向量y。确保X和y的维度匹配。
2023-07-14 09:35:27
6821
原创 使用matlab中的SVM进行数据回归预测
函数进行拆分,一个常见的比例是将数据的70%用于训练,30%用于测试。这样,你就可以使用MATLAB中的支持向量机模型进行数据回归预测了。记得根据实际问题对SVM的参数进行调优。将你的特征矩阵X和目标变量向量y加载到MATLAB工作空间中。确保X和y的维度匹配。将数据集划分为训练集和测试集,可以使用。
2023-07-14 09:33:48
3810
原创 使用matlab中的随机森林进行数据回归预测
函数进行拆分,一个常见的比例是将数据的70%用于训练,30%用于测试。这样,你就可以使用MATLAB中的随机森林模型进行数据回归预测了。记得根据实际问题对随机森林的参数进行调优。将你的特征矩阵X和目标变量向量y加载到MATLAB工作空间中。确保X和y的维度匹配。将数据集划分为训练集和测试集,可以使用。
2023-07-13 09:53:06
2815
1
原创 使用python中的随机森林进行数据回归预测
这样,你就可以使用随机森林模型进行数据回归预测了。记得根据实际问题对随机森林的参数进行调优。你需要准备你的特征矩阵X和目标变量向量y。确保X和y的维度匹配。参数指定了随机森林中决策树的数量,你可以根据需要进行调整。
2023-07-13 09:52:03
2567
原创 使用python中的SVM进行数据分类预测
类来构建支持向量机(SVM)模型。首先,将数据集划分为训练集和测试集;然后创建一个SVM模型,设置参数,如选择线性核函数;接下来使用训练集对模型进行训练;最后,利用测试集数据进行预测,并根据预测结果评估模型性能。根据您的数据集和问题,可以根据需要进行模型参数调整和优化,例如选择其他核函数、调整正则化参数C等,以获得更好的预测结果和性能。
2023-07-12 09:41:15
2803
原创 使用matlab里的SVM进行数据分类预测
函数建立支持向量机(SVM)模型,并设置相关参数,如核函数。接下来,使用训练好的模型对测试集进行预测,并计算预测准确率作为性能评估指标。根据您的数据集和问题,您可以根据需要对模型参数进行调整和优化,例如尝试不同的核函数、调整正则化参数C等来改善模型性能和预测精度。该示例代码假设您已经拥有特征矩阵X和对应的标签向量Y。首先,将数据集划分为训练集和测试集。
2023-07-12 09:40:09
2595
原创 使用python中的随机森林进行数据分类预测
类来构建随机森林模型。首先,将数据集划分为训练集和测试集,然后创建一个随机森林模型,并使用训练集对其进行训练。最后,用测试集数据进行预测,并计算预测准确率作为性能评估指标。根据您的数据集和问题,可以进行相应的修改和调整来获得更好的预测结果和性能。
2023-07-11 10:48:17
2540
原创 使用matlab随机森林进行数据分类预测
程序首先将数据集划分为训练集和测试集,然后使用TreeBagger函数建立随机森林模型,并将模型应用于测试集进行预测。需要注意的是,针对具体数据集和问题,可能需要进行适当的调整和修改。评估模型性能:通过比较模型预测结果与测试集中的真实标签来评估模型性能。训练集用于建立随机森林模型,测试集用于评估模型性能。模型预测:使用训练好的随机森林模型对测试集进行预测。准备数据集:将数据集划分为特征和标签,确保数据集已经清洗并做好特征工程。请根据您的数据集和问题进行相应的修改和调整,以获取更好的预测结果和性能。
2023-07-11 10:44:12
4573
1
原创 使用matlab绘制混淆矩阵
函数并传入实际标签和预测标签向量作为参数。函数的返回值是一个包含了混淆矩阵的矩阵。函数来计算和绘制混淆矩阵。下面是一个基本的示例代码,展示了如何使用。等函数来设置标题和坐标轴标签,使图表更加清晰易读。请确保在运行此代码之前,你已经将实际标签和预测标签保存在名为。的向量中,并将它们的值根据实际情况进行了相应的替换。然后,我们使用MATLAB的图形功能绘制混淆矩阵。函数添加颜色条,可以帮助解释混淆矩阵中的数据。在上述代码中,我们首先计算了混淆矩阵,使用。函数用于绘制矩阵,使用混淆矩阵。
2023-07-10 10:00:46
4816
原创 在matlab里设置simlink模型仿真时间
这些命令行程序可以在MATLAB的命令窗口中使用,或者可以将它们编写为脚本文件进行使用。确保你已经加载了所需的模型,并将其文件名替换为模型名称。在这两种方式中,你需要将模型名称替换为你实际使用的模型名称,并将仿真停止时间替换为你想要的实际时间。其中,'模型名称’是你要仿真的模型名称,'仿真停止时间’是你要设置的仿真时间,以秒为单位。其中,'模型名称’是你要仿真的模型名称,'仿真停止时间’是你要设置的仿真时间,以秒为单位。在MATLAB中,你可以使用命令行程序来设置仿真时间。
2023-07-10 09:56:18
4348
原创 使用Python进行小波去噪
通过以上步骤,我们使用Python成功对信号进行了小波去噪处理。请注意,小波去噪过程中的小波基的选择和阈值的设定都可能会影响去噪效果,具体的选择应根据具体问题和要求进行调整和优化。在这个例子中,我们选择了小波基为’Daubechies 4’,去噪级别为6。然后,我们对带有噪声的信号。进行小波变换,通过设定适当的阈值,对细节系数进行阈值处理。最后,通过逆小波变换,我们重构出去噪后的信号。运行以上代码,将显示原始信号、带噪信号以及去噪后的信号的可视化结果。在这个例子中,我们生成了一个由两个正弦波组成的信号。
2023-07-09 09:55:10
5727
6
原创 python绘制混淆矩阵
要在Python中绘制机器学习中的混淆矩阵,我们可以使用一些流行的数据科学库,如NumPy、Matplotlib和Scikit-learn。请注意,以上的示例是一个简单的二分类问题的混淆矩阵。在多分类问题中,混淆矩阵的维度会相应增加。此外,你还可以对混淆矩阵进行其他定制化的样式和表现形式。希望以上内容能帮助你绘制机器学习中的混淆矩阵,并更好地理解模型的预测性能。这段代码将绘制混淆矩阵,并配以相应的颜色条和标签。运行以上代码,你将获得一个漂亮的混淆矩阵可视化图。这将计算真实标签和预测标签之间的混淆矩阵。
2023-07-09 09:48:31
2711
1
原创 python中的函数
本文通过全面介绍函数的定义、调用和高级特性,以及具体应用场景的分析,帮助读者全面理解函数在编程中的价值和作用。本文通过全面介绍函数的定义、调用和高级特性,以及具体应用场景的分析,帮助读者全面理解函数在编程中的价值和作用。本文将全面介绍Python中函数的概念和基本原理,并讨论函数在编程中的重要性和优势。我们将从函数的定义和调用开始,讲解创建函数的基本语法和规则,包括函数名称、参数和返回值等。本节将总结一些编写函数时的常见错误和陷阱,并提供一些建议和技巧,以确保函数的可读性、可维护性和可扩展性。
2023-07-08 10:12:00
253
原创 Python在信号处理中的应用:模糊熵的计算
信号处理是一门广泛应用于各个领域的学科,其中模糊熵作为一种信号特征描述的方法,在信号处理和信息理论中有着重要的作用。我们将首先了解模糊熵的基本概念和原理,然后详细讲解如何通过Python代码实现模糊熵的计算,并对其在实际应用中的意义进行讨论。模糊熵作为具有一定复杂性的信号特征描述方法,能够量化信号的不确定性和复杂性,常应用于生物医学信号分析、图像处理、数据压缩等领域。通过本文的阅读和实践,读者可以了解模糊熵的基本概念和原理,并学会使用Python编程语言进行信号处理中模糊熵的计算。二、模糊熵的概念和原理。
2023-07-08 10:05:18
1216
原创 python读取excel文件
这样,你就可以使用pandas或openpyxl库读取Excel文件了。根据你的具体需求,选择适合的库和方法来操作Excel数据。希望这对你有所帮助!对象进行数据处理和分析了。上述代码将遍历Excel文件中的每一行,并打印其内容。该方法将打印Excel文件的前五行数据。在Python中,你可以使用。是你的Excel文件的路径。等库来读取Excel文件。选项将只打印单元格的值。
2023-07-07 09:12:19
6690
原创 使用python求信号的样本熵
在上述代码中,我们生成了一个示例信号 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],然后使用。要计算信号的样本熵(sample entropy),您可以使用pyentrp等库来实现。函数从pyentrp库中计算样本熵。样本熵是一种用来度量信号复杂度或不规则程度的指标。注意,pyentrp库可用于计算多种熵指标,例如样本熵、近似熵等。您可以根据您的需求选择适当的熵指标。
2023-07-07 09:07:42
1561
原创 使用python实现1DCNN-GRU回归预测
这只是一个简单示例,您可能需要根据您的数据集的特点进行必要的调整,例如输入信号的形状和目标变量的类型等。如需更详细或个性化的帮助,请提供更多相关代码和数据。请确保您已经准备好训练集和测试集的数据(
2023-07-06 10:10:20
2219
原创 使用python实现CNN-GRU故障诊断
这只是一个简单示例,您可能需要根据您的数据集的特点进行必要的调整,例如输入信号的形状、类别数量和标签格式等。如需更详细或个性化的帮助,请提供更多相关代码和数据。请确保您已经准备好训练集和测试集的数据(
2023-07-06 10:05:35
1053
原创 python求信号的多尺度样本熵
以上代码可以用来计算给定信号的多尺度样本熵。你需要提供信号数组、最大尺度、子序列长度m和阈值r作为输入参数。返回一个多尺度样本熵的列表。提取信号的多尺度样本熵可以用于分析信号的复杂性和不规则性。请注意,这只是一个示例代码,你可能需要根据具体的应用场景进行进一步的调整和优化。
2023-07-05 13:30:38
841
1
原创 python求信号的模糊熵
请注意,这里的模糊熵的计算方法类似于样本熵的计算方法,但它考虑了在某个匹配条件下的众多匹配点数量B。模糊熵的计算结果越高,表示信号的复杂性越大。请根据您的具体需求,使用以上代码来计算信号的模糊熵,并进行相应的参数调整。,该函数接受信号数组、子序列长度m和阈值r作为输入,并返回信号的模糊熵。以上代码定义了一个函数。
2023-07-05 13:29:28
601
原创 小波分解及其Python实现方法
我们将介绍小波函数的选择、离散小波变换(DWT)和连续小波变换(CWT)的概念,以及如何在Python中使用PyWavelets库进行小波分解。本文介绍了小波分解的原理、小波函数的选择、离散小波变换和连续小波变换的概念,并使用Python和PyWavelets库进行了实际演示。我们可以使用PyWavelets库对信号进行离散小波变换和连续小波变换,并获取相应的小波系数。通过对信号进行小波变换,我们可以得到一系列小波系数,表示不同尺度的信号成分。不同的小波函数在频域和时域的特性不同,适用于不同类型的信号。
2023-07-04 11:01:18
3021
1
原创 使用python对信号进行FFT并提取奇偶次倍频
在上述代码中,我们首先设置采样率、信号时长和基频,并生成时间向量。然后,我们使用三个正弦波分量生成带有噪声的信号。你可以根据实际需求修改代码中的参数,以适应你想要处理的信号和频率范围。希望这对你有所帮助!如有任何问题,请随时提问。在Python中进行信号的FFT变换并提取奇偶次倍频,可以使用NumPy和SciPy库。然后,通过查找最接近目标频率的位置,提取相应频率的幅值。最后,输出频率和对应的幅值。函数对信号进行FFT变换,并使用。
2023-07-04 10:55:46
526
原创 使用matlab对信号进行FFT并提取奇偶次倍频
假设你的信号是一个列向量,名为signal。f3*t+pi/4);disp(‘频率(Hz) 幅值’);disp(‘频率(Hz) 幅值’);disp(‘奇数频率成分:’);disp(‘偶数频率成分:’);% 获取频谱中的奇数和偶数索引。% 计算信号长度和FFT长度。% 假设你的采样率为Fs。% 提取奇数和偶数频率成分。% 显示奇数和偶数频率成分。
2023-07-03 11:14:37
626
原创 使用MATLAB进行FFT变换并提取前20个频谱幅值特征
这段代码会计算信号的FFT,并绘制出频谱图。然后,它会找到幅值最大的前20个频率,并显示它们的频率值和幅值。你可以根据你的实际数据进行相应的修改。
2023-07-03 10:31:58
1171
1
原创 使用MATLAB提取某一信号的前20个频谱特征
使用MATLAB进行FFT(快速傅里叶变换)分析可以帮助你提取信号的频谱特征。请记住,这只是一个基本示例,你可能需要根据你的实际数据进行修改。
2023-07-03 10:24:09
866
原创 使用python进行指定保留多少贡献度PCA降维
紧接着,我们计算了贡献度的累计比例,并设置了一个保留的贡献度阈值(threshold)。通过找到累计比例大于等于阈值的维度索引,我们确定了保留的维度数量(n_components)。通过以上步骤,我们利用Python成功实现了PCA降维,并选择了要保留的贡献度来确定降维后的维度。在进行降维时,可以选择保留多少贡献度来确定降维后的维度。上述代码中,首先导入需要的库。最后,我们使用保留的维度数量进行PCA降维,并得到降维后的数据矩阵 X_new。方法来对数据进行PCA降维,得到降维后的数据矩阵 X_new。
2023-07-02 10:02:35
741
小波包能量熵特征提取+灰狼优化算法优化BP分类
2023-07-20
小波包特征提取+BP分类(含完整数据及程序)
2023-07-20
小波包特征提取+PCA降维+BP分类(含完整程序及数据)
2023-07-20
GRU回归预测matlab版(含数据及程序)
2023-07-20
使用matlab给信号添加某一信噪比的噪声
2023-07-18
使用matlab对simlink模型循环仿真,每仿真一次改变simlink中的某一个元件参数一次
2023-07-18
Matlab读取Excel文件指南
2023-07-18
使用matlab对信号进行FFT并提取奇偶次频率处所对应的幅值特征
2023-07-03
基于BP神经网络的数据分类matlab程序(含完整数据,亲测好用)
2023-04-21
基于小波时频fft频谱的双流CNN的轴承故障诊断pytorch+matlab(含对比)
2024-01-14
基于灰狼优化算法的VMD分解MATLAB程序
2023-12-17
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人