games101 Lecture 9 线性插值(对三角形内部的线性插值)

本文探讨了在三维空间中如何通过重心坐标来表示三角形内的任意点,并指出当点在不同投影下,线性插值可能会产生变化。解决此问题的方法是对三维三角形进行三维线性插值,再映射到二维屏幕坐标。同时,介绍了线性插值在位置、纹理、颜色等属性上的应用,并强调了在投影变换前后保持一致的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

重心坐标

在这里插入图片描述

α\alphaαβ\betaβγ\gammaγ为正时,点(x,y)=αA+βB+γC(x,y) =\alpha A+\beta B+ \gamma C(x,y)=αA+βB+γC在三角形内。

如何去求任意(x,y)坐标的α,β,γ\alpha, \beta, \gammaα,β,γ

在这里插入图片描述
AAA_AAA为顶点A对立面对应的三角形的面积。AB,ACA_B,A_CAB,AC同理。

重心坐标的一般表达式

在这里插入图片描述

重心

α,β,γ\alpha, \beta, \gammaα,β,γ) = (13,13,13\frac1 3,\frac1 3,\frac1 331,31,31)

线性插值

在这里插入图片描述
VVV 可以为位置(position),纹理(texture),坐标(coordinate),颜色(color),法线(normal),深度(depth),材质属性(material attributes)。

线性插值的问题

三维三角形 在不同投影下 某个点的线性插值的结果 可能不同。

解决的方法

对三维空间中的三角形进行三维线性插值,然后再映射为二维屏幕坐标。

解决思路

在对某个顶点进行投影逆变换变为原来的点,使用原先坐标插值的结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Elsa的迷弟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值