
数据结构
向上Claire
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
建堆
建堆 对79来讲,左边不是堆,右边不是堆 对于66来讲,左边也不是个堆右边也不是个堆 那怎么办如何做? 我们从倒数第一个有儿子的开始 对这个节点来讲,左边一定只有一个儿子,右边也一定只有一个儿子,所以可以调成堆 ...原创 2020-02-22 16:15:58 · 111 阅读 · 0 评论 -
堆的删除
堆的删除 这是堆顶的元素 这是左子树的一个堆 右子树也是一个堆 要把这个元素删掉 把最后一个元素替换到这个位置 当把最后一个元素拿掉替换到根顶的元素时, 左边是个堆,右边是个堆,我们怎么把最顶上调成一个堆 实际上最核心的是,已知左边是一个堆,右边是一个堆,我们怎么把后来的元素调成一个堆,调的方法就是左右儿子进行比较 ...原创 2020-02-22 16:07:29 · 290 阅读 · 0 评论 -
java中的优先队列-二叉堆
java中的优先队列-二叉堆 https://blog.csdn.net/yjw123456/article/details/89483897 什么是堆? 优先队列:(Priority Queue):特殊的“队列”,取出元素的顺序是依照元素的优先权(关键字)大小,而不是元素进入队列的先后顺序。 最大堆的插入 要跟父节点去调整,要调整到你插进去之后仍然是有序的 i表示要放的位置,父...原创 2020-02-22 16:03:00 · 195 阅读 · 0 评论 -
最小生成树算法--kruscal算法
最小生成树算法–kruscal算法原创 2020-02-22 13:21:12 · 231 阅读 · 0 评论 -
最小生成树--prim算法
最小生成树–prim算法 应用背景: 最节省经费的前提下,在n个城市之间建立通信联络网 定点表示城市 边表示城市之间的线路 边的权值表示相应的代价 生成树的代价:树上各边权值之和 最小代价生成树(Minimum Cost Spanning Tree,简称最小生成树) 无相连通网的最小代价生成树 左边的就是连通图,右边的就是最小代价生成树 一个连通图的最小生成树不一定唯一,但最小生成树...原创 2020-02-22 13:14:45 · 1243 阅读 · 0 评论 -
线性链表(一)--单链表
线性链表(一)–单链表 链式的结构特点 线性链表/单链表: 例如: 排列五个单词,数据域域指针域 先顺着头指针找到bat指针域,再找到cat的指针域最后找到最后一个指针域,为null 为了让数据更好的进行删除等操作,我们通常在前面加上头结点,例如火车头,火车头不是起运载作用的 所以插入和删除情况都需要分两种情况进行分配 不可以 例如火车挂钩 先将p所指的车厢挂到s车厢之后,再...原创 2020-02-22 12:33:58 · 496 阅读 · 0 评论 -
顺序表
顺序表 顺序存储的线性表 顺序存储是借助元素在存储器中的相对位置来表示数据元素的相对逻辑关系,因此所谓顺序表是按照线性表的节点按逻辑顺序依次存放在一组地址连续的存储单元里。 顺序表基本操作的实现 创建空顺序表 InitList_Sq构建一个空的顺序表 具体步骤为 先分配为能存储List_Init_Size元素的存储空间,并令elem指针域指向他的基地址,再将length域的值设为0,list...原创 2020-02-22 12:12:46 · 184 阅读 · 0 评论 -
线性表的定义(二)--合并和归并
线性表的定义(二)–合并和归并 给了两个集合 可以逐一检查B元素, 如果A中没有该元素,则将该元素插入到A中 其中LB中的每一个元素x可以通过**GetElem()来实现 而判断x是否属于LA,可以通过LocateElem()来实现 将x插入到LA的末尾,可以通过ListInsert()**来实现 归并有序线性表算法 小朋友从两队换一队 先比较两列排在最前的面的身高,矮的那个先出...原创 2020-02-22 11:47:52 · 1246 阅读 · 0 评论 -
线性表的定义(一)--概念和ADT
线性表的定义(一)–概念和ADT 什么是线性表? 线性关系 线性表的抽象数据类型 DestroyList将表中的存储空间都释放掉 而ClearList没有将存储空间释放掉 对表中元素的查找操作 GetElem按位序查找并返回位序的值 LocateElem是查找并返回给定相等值e得位序 compare()传递的是判断函数的指针,这里将函数指针作为的主要目的就是提高LocateElem函数的通...原创 2020-02-22 11:28:39 · 1784 阅读 · 0 评论