深度学习计算机视觉从入门到精通——深度卷积网络原理与模型介绍
来自数据堂人工智能实验室的分享
数据实验室:https://www.datatang.com/laboratory?dw=news
一、卷积神经网络原理
1.1神经网络最基本单元—神经元
1943年心理学家McCulloch和数学家W.Pitts在分析总结神经元基本特性的基础上首先提出的M-P模型
美国学者Rosenblatt 于1958年提出来的感知器(Perceptron)
Rumelhart,McClelland于1985年提出了BP网络的误差反向后传BP(Back Propagation)学习算法
1985年,Powell提出了多变量插值的径向基函数(Radical Basis Function,RBF)方法 。1988年, Moody和Darken提出了一种神经网络结构,即RBF神经网络
1976年,美国Boston大学学者G.A.Carpenter提出自适应共振理论(Adaptive Resonance Theory,缩写为ART)
1982年,美国加州工学院J.Hopfield提出了可用作联想存储器和优化计算的反馈网络,这个网络称为Hopfield神经网络
从某种意义上来说,人工智能起源于人类试图用机器模仿人类大脑。
激活函数作用—数学上的映射
形象的理解激活函数—空间扭曲求得线性分类
1.2卷积操作
现代计算机常用的离散卷积是两矩阵对应元素相乘求和
1.3池化层
池化层的主要目的是通过降采样的方式,在不影响图像质量的情况下,压缩图片,减少参数。
池化过程动画演示
1.4全连接层
做完Max Pooling后,我们就会把这些数据“拍平”,丢到Flatten层,然后把Flatten层的output放到full connected Layer里,采用softmax对其进行分类。