深度卷积网络原理与模型介绍

深度学习计算机视觉从入门到精通——深度卷积网络原理与模型介绍
来自数据堂人工智能实验室的分享
数据实验室:https://www.datatang.com/laboratory?dw=news

一、卷积神经网络原理

1.1神经网络最基本单元—神经元

1943年心理学家McCulloch和数学家W.Pitts在分析总结神经元基本特性的基础上首先提出的M-P模型
美国学者Rosenblatt 于1958年提出来的感知器(Perceptron)
Rumelhart,McClelland于1985年提出了BP网络的误差反向后传BP(Back Propagation)学习算法
1985年,Powell提出了多变量插值的径向基函数(Radical Basis Function,RBF)方法 。1988年, Moody和Darken提出了一种神经网络结构,即RBF神经网络
1976年,美国Boston大学学者G.A.Carpenter提出自适应共振理论(Adaptive Resonance Theory,缩写为ART)
1982年,美国加州工学院J.Hopfield提出了可用作联想存储器和优化计算的反馈网络,这个网络称为Hopfield神经网络

从某种意义上来说,人工智能起源于人类试图用机器模仿人类大脑。
激活函数作用—数学上的映射

形象的理解激活函数—空间扭曲求得线性分类

1.2卷积操作

现代计算机常用的离散卷积是两矩阵对应元素相乘求和
1.3池化层
池化层的主要目的是通过降采样的方式,在不影响图像质量的情况下,压缩图片,减少参数。
池化过程动画演示
1.4全连接层
做完Max Pooling后,我们就会把这些数据“拍平”,丢到Flatten层,然后把Flatten层的output放到full connected Layer里,采用softmax对其进行分类。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值