Linear Regression - Normal Equation and Regularization

In linear regression problems, we can use a method called Normal Equation to fit the parameters.
Suppose we have a training set like this:
X=[(x(1))T(x(2))T...(x(m))T] X = \left[\begin{matrix}(x^{(1)})^T \\ (x^{(2)})^T \\ ... \\ (x^{(m)})^T\end{matrix}\right] X=(x(1))T(x(2))T...(x(m))T
where:
x(i)=[x0(i)x1(i)...xn(i)] x^{(i)} = \left[\begin{matrix}x_0^{(i)} \\ x_1^{(i)} \\ ... \\ x_n^{(i)}\end{matrix}\right] x(i)=x0(i)x1(i)...xn(i)
and the label set:
y=[y(1)y(2)...y(m)] y = \left[\begin{matrix}y^{(1)} \\ y^{(2)} \\ ... \\ y^{(m)}\end{matrix}\right] y=y(1)y(2)...y(m)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值