146. LRU 缓存(Java),详细注释版

本文介绍了如何设计一个LRUCache类,实现最近最少使用的缓存策略。利用DoublyLinkedList维护访问顺序,HashMap存储键值对,保证get和put操作在平均O(1)的时间复杂度内完成。当缓存满时,会淘汰最久未使用的项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache 类:

  • LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存 int
  • get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
  • void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出最久未使用的关键字。

函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。

示例:

输入
[“LRUCache”, “put”, “put”, “get”, “put”, “get”, “put”, “get”, “get”, “get”]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]

解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到) lRUCache.put(4, 4); // 该操作会使得关键字 1作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3 lRUCache.get(4); // 返回 4

提示:

  • 1 <= capacity <= 3000
  • 0 <= key <= 10000
  • 0 <= value <= 105
  • 最多调用 2 * 105 次 get 和 put

代码:

class LRUCache {

    class DlinkedNode{
        int key;
        int value;
        // 双指针链表
        DlinkedNode prev;
        DlinkedNode next;
        public DlinkedNode() {}
        public DlinkedNode(int key0, int value0) {key = key0; value = value0;}
    }

    private Map<Integer,DlinkedNode> map = new HashMap<Integer, DlinkedNode>();
    private int size;
    private int capacity;
    private DlinkedNode head, tail;

    public LRUCache(int capacity) {
        this.size = 0;       //this的作用主要是用于区分全局变量和局部变量
        this.capacity = capacity;
        // 创建伪头节点和伪尾节点
        head = new DlinkedNode();
        tail = new DlinkedNode();
        head.next = tail;
        tail.prev = head;

    }
    
    public int get(int key) {
        DlinkedNode node = map.get(key);
        if (node == null){
            //如果不存在,返回-1
            return -1;
        }
        //存在,把节点放到链表头部,返回节点的值
        moveToHead(node);
        return node.value;
        
    }
    
    public void put(int key, int value) {
        DlinkedNode node = map.get(key);
        if (node == null){
            // 缓存中不存在此key,创建新节点
            DlinkedNode newNode = new DlinkedNode(key, value);
            // 把新节点加入到哈希表中
            // 这里自动装箱
            map.put(key,newNode);
            // 增加新节点到链表头部
            addToHead(newNode);
            ++size;
            if (size > capacity){
                // 如果缓存超出容量,删除链表尾部节点
                DlinkedNode tail = removeTail();
                // 同时移除哈希表中对应节点
                map.remove(tail.key);
                --size;
            }
        }
        else{
            // 缓存中存在此key,更新key中的值
            node.value = value;
            // 同时把对应的节点移动到链表头部
            moveToHead(node);
        }

    }

    // 增加节点到链表头部
    private void addToHead(DlinkedNode node){
        // 把新的节点插入到伪头节点和第一个节点(指伪头节点的下一个节点)之间
        node.prev = head;
        node.next = head.next;
        
        // 注意这里的顺序不能反 
        // 把第一个节点的向前指针指向新节点
        head.next.prev = node;
        // 把伪头节点的向后指针指向新节点
        head.next = node;
    }

    //删除节点
    private void removeNode(DlinkedNode node){
        // 把当前节点前一个节点向后的指针指向当前节点的后一个节点
        node.prev.next = node.next;
        // 把当前节点后一个节点向前的指针指向当前节点的前一个节点
        node.next.prev = node.prev;
    }
    
   //把节点移动到链表头部
    private void moveToHead(DlinkedNode node){
        // 删除当前节点
        removeNode(node);
        // 把当前节点增加到链表头部
        addToHead(node);
    }

    //删除链表最后一个节点
    private DlinkedNode removeTail(){
        //创建一个临时节点用于记录最后一个节点(即伪尾节点的前一个节点),主要是用于返回
        DlinkedNode temp = tail.prev;
        // 删除最后一个节点
        //复用删除节点代码
        removeNode(temp);
        //或者
        // temp.prev.next = tail;
        // tail.prev = temp.prev;
        return temp;
    }

}


/**
 * Your LRUCache object will be instantiated and called as such:
 * LRUCache obj = new LRUCache(capacity);
 * int param_1 = obj.get(key);
 * obj.put(key,value);
 */
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

打孔猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值