一文读懂目标检测中的各种IoU损失函数
本文首发于微信公众号【DeepDriving】,欢迎关注。
导读
随着深度学习技术的发展,在视觉目标检测领域出现了越来越多优秀的算法模型,比较典型的有以Fast-RCNN系列为代表的二阶段目标检测算法和以YOLO系列为代表的一阶段目标检测算法。通常,一个目标检测任务需要完成两个子任务:目标定位和目标分类。目标定位是要在图像中确定目标的位置,输出其在图像中的坐标信息;目标分类就是要对该目标进行分类以确定该目标属于什么类别以及其属于该类别的置信度。
目标定位依赖一个边界框回归模块去定位目标。边界框回归是目标检测中的一种主流技术方法,该方法使用矩形边界框去预测目标对象在图像中的位置,旨在细化预测边界框的位置。边界框回归使用预测边界框和真实边界框(Ground-Truth)之间的重叠区域作为损失函数,称为基于交并比(Intersection over Union,IoU)的损失函数。
IoU损失函数
IoU指的是预测边界框与真实边界框的交集与并集之比: