numpy——索引与切片

本文介绍了Numpy数组的多种索引方式,包括整数索引、切片索引、dots索引、整数数组索引和布尔索引。特别地,切片操作在Numpy中不会复制数据,而是创建视图。此外,还提到可以使用…来简化多维数组的索引,并讨论了布尔索引在筛选数组元素时的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整数索引

一维数组

x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
print(x[2]) 
3

二维数组

x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
print(x[2]) 
print(x[2][1]) 
print(x[2, 1]) 
[21 22 23 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值