推荐系统GBDT,Xgboost,Lightgbm入门原理简介

本文介绍了GBDT、Xgboost和Lightgbm三种基于决策树的机器学习算法。GBDT是梯度提升决策树,通过残差最小化构建模型。Xgboost在GBDT基础上引入了二阶导数信息,优化目标函数。Lightgbm则通过Histogram、GOSS和EFB等技术提高了效率。这些模型广泛应用于推荐系统、广告点击率预测等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Facebook于2014年推出了GBDT+LR组合模型的广告推荐系统,简单来说就是利用GBDT自动进行特征筛选和组合,生成新的离散型特征向量,再利用LR模型预测CTR。
因此本章将讲述一下GBDT以及衍生的Xgboost,lightgbm模型。

树模型

首先,简单了解机器学习中的树模型
树模型是一个一个特征进行处理,对每一个特征做一个划分,这是与线性模型的不同之处。
在这里插入图片描述
决策树学习:采用自顶向下的递归的方法,基本思想是以信息熵为度量构造一棵熵值下降最快的树,到叶子节点处熵值为0(叶节点中的实例都属于一类)。

决策树思想,实际上就是寻找最纯净的划分方法,这个最纯净在数学上叫纯度,纯度通俗点理解就是目标变量要分得足够开(y=1的和y=0的混到一起就会不纯)。另一种理解是分类误差率的一种衡量。实际决策树算法往往用到的是,不纯度。不纯度的选取有多种方法,每种方法也就形成了不同的决策树方法,比如ID3算法使用信息增益作为不纯度;C4.5算法使用信息增益率作为不纯度;CART算法使用基尼系数作为不纯度。

集成学习

分为三类:Bagging,Boosting以及Stacking

  1. Bagging,bootstrap aggregating,bootstrap也称为自助法,它是一种有放回的抽样方法,目的为了得到统计量的分布以及置信区间。Bagging就是利用bootstra
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值