yolov5训练时卡住0%解决方案

在使用YoloV5进行从LabelImg标注数据的训练时遇到进度条卡在0%的困境,通过将workers参数设置为0,问题得到了成功解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用yolov5训练从labelImg标注的数据时,训练时一直卡在0%:

Image sizes 640 train, 640 val
Using 4 dataloader workers
Logging results to runs/train/exp4
Starting training for 10 epochs...

     Epoch   gpu_mem       box       obj       cls    labels  img_size
  0%|          | 0/3 [
### YOLOv8 训练过程卡住的可能原因及解决方案 当遇到YOLOv8训练过程中程序卡住的情况,可以从以下几个方面排查并解决问题。 #### 1. 数据加载问题 数据加载器可能会因为网络连接或其他因素而出现问题。确保所有必要的图像文件都存在,并且路径配置正确。如果使用的是默认测试图片,可以尝试修改`utils/general.py`中的代码来避免对外部资源的依赖[^1]: ```python im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if False else np.ones((640, 640, 3)) ``` 这行代码的作用是在找不到指定图片的情况下返回一个全白的numpy数组而不是去访问外部链接,从而防止因网络延迟造成的顿现象。 #### 2. GPU内存不足 对于GPU资源有限的情况,建议调整batch size大小或者减少模型复杂度以适应硬件条件。可以通过命令行参数设置更合适的批处理数量,比如: ```bash python train.py --img 640 --batch-size 16 ... ``` 适当降低分辨率也有助于缓解这个问题。 #### 3. 环境配置不当 为了避免环境冲突带来的不稳定情况,在创建新的Conda虚拟环境中安装所需的库是比较好的做法[^3]: ```bash conda create -n yolov8 python=3.9 conda activate yolov8 pip install -r requirements.txt ``` #### 4. 版本兼容性问题 有不同版本之间的API变化可能导致某些功能无法正常工作。确认所使用的PyTorch和其他依赖项与当前版本的YOLOv8相匹配是非常重要的。如果有报错提示像`Can't get attribute 'SPPF'`这样的错误,则可能是由于模块内部结构发生了改变所致[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值