优化模型参数
有了模型之后,可以开始训练参数了。这是一个迭代的过程,这中间我们需要损失函数、迭代次数、优化器、各种超参数。接下来将诸逐个介绍。
预先的代码
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor()
)
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor()
)
train_dataloader = DataLoader(training_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
nn.ReLU()
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork()
这里之前都讲过,不多赘述。
超参数
主要有三个:
learning_rate:学习率---->每次迭代中决定你的参数的变化程度的超参数。例如W = W - dW * lr
batch_size:将多个样本捆绑在一起进行传播,这样做既可以加快传播,也可以加快训练。
epochs:迭代的次数
learning_rate = 1e-3
batch_size = 64
epochs = 5
优化循环
每次循环包含两个部分:
训练循环:优化参数
测试循环:查看模型的表现是否优化
损失函数
损失函数衡量了模型获得的结果与正确目标之间的不相似度,类似于我们生活中的一个target,努力让损失函数变小。PyTorch中有很多损失函数,在这里我们采用nn.CrossEntropyLoss。
# 初始化损失函数
loss_fn = nn.CrossEntropyLoss()
优化器
优化就是一个调整参数大小从而减少损失的过程。在这里我们使用SGD优化器。
我们初始化优化器时要把需要训练的参数放入,并指定学习率。
# 初始化优化器,并将需要训练的参数登记进去,传入learning_rate
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
在训练循环中,优化由三部分组成:
1.调用optimizer.zero_grad。重置模型参数的梯度。梯度默认相加,为了避免多次相加,我们重置为0
2.调用loss.backward()反向传播损失值。PyTorch会存储每个参数的梯度
3.一旦有了梯度,我们调用optimizer.step() 去更新参数值
完全实现
def train_loop(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
for batch, (X, y) in enumerate(dataloader):
# 计算预测值和损失
pred = model(X)
loss = loss_fn(pred, y)
# 反向传播
optimizer.zero_grad() # 把参数的梯度全部重置为0,防止多次计算
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X) # current 形容的是到哪个epoch了
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test_loop(dataloader, model, loss_fn):
size = len(dataloader.dataset) # 全部样本的数量
num_batches = len(dataloader) # mini_batch的数量
test_loss, correct = 0, 0
with torch.no_grad(): # 不存储参数,为了加快计算速度,可参照上一节课的知识
for X, y in dataloader:
pred = model(X)
loss = loss_fn(pred, y)
test_loss += loss.item()
# y是维度64的列向量,将pred在横向取最大值的下标,获得一个boolean类型的数组,再将其转换为float值,再取总和。最终转换为python数据类型
correct += (y == pred.argmax(1)).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
我们已经准备好了一切,开始迭代
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
epochs = 10
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train_loop(train_dataloader, model, loss_fn, optimizer)
test_loop(test_dataloader, model, loss_fn)
print("Done!")
结果较长,我这里就不放了