Pytorch之OPTIMIZING MODEL PARAMETERS

优化模型参数

有了模型之后,可以开始训练参数了。这是一个迭代的过程,这中间我们需要损失函数、迭代次数、优化器、各种超参数。接下来将诸逐个介绍。

预先的代码

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda

training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
)

test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor()
)

train_dataloader = DataLoader(training_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
            nn.ReLU()
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

model = NeuralNetwork()

这里之前都讲过,不多赘述。

超参数

主要有三个:
learning_rate:学习率---->每次迭代中决定你的参数的变化程度的超参数。例如W = W - dW * lr

batch_size:将多个样本捆绑在一起进行传播,这样做既可以加快传播,也可以加快训练。

epochs:迭代的次数

learning_rate = 1e-3
batch_size = 64
epochs = 5

优化循环

每次循环包含两个部分:
训练循环:优化参数
测试循环:查看模型的表现是否优化

损失函数

损失函数衡量了模型获得的结果与正确目标之间的不相似度,类似于我们生活中的一个target,努力让损失函数变小。PyTorch中有很多损失函数,在这里我们采用nn.CrossEntropyLoss。

# 初始化损失函数
loss_fn = nn.CrossEntropyLoss()

优化器

优化就是一个调整参数大小从而减少损失的过程。在这里我们使用SGD优化器。
我们初始化优化器时要把需要训练的参数放入,并指定学习率。

# 初始化优化器,并将需要训练的参数登记进去,传入learning_rate
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

在训练循环中,优化由三部分组成:
1.调用optimizer.zero_grad。重置模型参数的梯度。梯度默认相加,为了避免多次相加,我们重置为0
2.调用loss.backward()反向传播损失值。PyTorch会存储每个参数的梯度
3.一旦有了梯度,我们调用optimizer.step() 去更新参数值

完全实现

def train_loop(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    for batch, (X, y) in enumerate(dataloader):
        # 计算预测值和损失
        pred = model(X)
        loss = loss_fn(pred, y)

        # 反向传播
        optimizer.zero_grad()  # 把参数的梯度全部重置为0,防止多次计算
        loss.backward()
        optimizer.step()

        if batch % 100 == 0:
            loss, current = loss.item(), batch * len(X)   # current 形容的是到哪个epoch了
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")


def test_loop(dataloader, model, loss_fn):
    size = len(dataloader.dataset)   # 全部样本的数量
    num_batches = len(dataloader)   # mini_batch的数量
    test_loss, correct = 0, 0

    with torch.no_grad():   # 不存储参数,为了加快计算速度,可参照上一节课的知识
        for X, y in dataloader:
            pred = model(X)
            loss = loss_fn(pred, y)
            test_loss += loss.item()
            # y是维度64的列向量,将pred在横向取最大值的下标,获得一个boolean类型的数组,再将其转换为float值,再取总和。最终转换为python数据类型
            correct += (y == pred.argmax(1)).type(torch.float).sum().item()

    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

我们已经准备好了一切,开始迭代

loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

epochs = 10
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train_loop(train_dataloader, model, loss_fn, optimizer)
    test_loop(test_dataloader, model, loss_fn)
print("Done!")

结果较长,我这里就不放了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值