概述
fiftyone的官方定义是一款用于构建高质量数据集和计算机视觉模型的开源工具。它提供了用于优化数据集分析管道的构建块。使用它来管理数据集、可视化复杂标签、评估模型、探索感兴趣的场景、识别故障模式、查找注释错误等等。本文主要介绍fiftyone的简单使用和CVAT的交互使用。关于fiftyone的基础知识详见https://docs.voxel51.com/user_guide/basics.html
fiftyone的安装与检验
我们可以先在conda建立一个虚拟环境,
conda create -n fo python=3.9
接着安装fiftyone,使用镜像源提高下载速度
pip install fiftyone -i https://pypi.tuna.tsinghua.edu.cn/simple
然后检验一下fiftyone是否能正常使用,在pycharm新建一个文件运行以下代码:
import fiftyone as fo
import fiftyone.zoo as foz
print(foz.list_zoo_datasets())
dataset = foz.load_zoo_dataset("quickstart")
session = fo.launch_app(dataset)
session.wait()
运行结果如下

点击网页的显示效果是这样的:

fiftyone提供桌面客户端和网页两种方式启动app,如果要在客户端启动,只需要在launch_app函数中,把desktop设置成True就可以了。


数据集加载
FiftyOne 支持自动加载以各种常见格式存储的数据集,同样也支持自定义格式的数据集。如果数据集在本地,可以通过Dataset将数据自动加载到:
import fiftyone as fo
# A name for the dataset
name = "my-dataset"
# The directory containing the dataset to import
dataset_dir = "/path/to/dataset"
# The type of the dataset being imported
dataset_type = fo.types.COCODetectionDataset # for example
dataset = fo.Dataset.from_dir(