卡尔曼滤波器推导

本文介绍了卡尔曼滤波器的基本原理及应用。通过数学推导展示了如何利用测量值逐步逼近真实值,并给出实例说明卡尔曼滤波器的运行过程。此外还探讨了数据融合、协方差矩阵和状态空间表达式等高级主题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注:受控制领域大牛CAN博士启发,受益匪浅,作此文以为笔记。

简介

  设
在这里插入图片描述

  卡尔曼滤波器是从测量值ZZZk的平均数开始的。开始推导:
在这里插入图片描述
由上式可知
在这里插入图片描述
  也就是说随着kkk的增大,测量结果Zk不在重要,因为已经获得了足够多的测量值,此时的估计值已经很贴近了实际值了。我们令Kk=1/k1/k1/k,即
在这里插入图片描述
可知,Kk[0,1][0,1][0,1]之间,当Kk =0=0=0时,估计值等于上一次计算的估计值,当Kk =1=1=1时,估计值等于本次测量值,这时引入两个参数eEST,eMEA,令
在这里插入图片描述

在这里插入图片描述
其中,eMEA是测量误差,是测量工具自身的属性,是不变的,eEST是估计误差,会受历史数据的影响,即
在这里插入图片描述
由上述几个式子便可使用卡尔曼滤波器来解决实际的问题了。步骤如下:
第一步
在这里插入图片描述
第二步
在这里插入图片描述
第三步
在这里插入图片描述

  有一个质量为50g50g50g的物体,但我们此时并不知道该物体质量是多少,先估计其有46g46g46g,估计误差为5g5g5g,将其放在称上称得质量为
在这里插入图片描述
该称的测量误差为3g3g3g,将所有数据放在Excel里进行计算
在这里插入图片描述
其中蓝色线条表示测量值,红色线条表示估计值,从图中可以看出,尽管测量值起伏较大,但估计值整体趋势很平缓,不断向实际值靠拢且十分接近实际值。

数据融合

  从一个例子入手,设某物体质量为mmm,分别用标准差为σ1 =2g=2g=2g和σ2 =4g=4g=4g得称来称该物体,称得质量分别为Z1 =30g=30g=30g和Z2 =33g=33g=33g,求出最优估计值。
  从上述中可得式
在这里插入图片描述
此时引入标准差,即估计值的标准差,当标准差越小时,即方差越小,估计值的波动越小,也就越趋于真实值。如下:
在这里插入图片描述
由上式可知,估计值的方差是关于Kk的函数,使估计值方差对Kk求导,即
在这里插入图片描述
将σ1 =2g=2g=2g和σ2 =4g=4g=4g代入上式中,Kk =0.2=0.2=0.2,得
在这里插入图片描述

协方差矩阵

  有以下333组数据
在这里插入图片描述
平均值
在这里插入图片描述
方差
在这里插入图片描述
协方差
在这里插入图片描述
协方差矩阵PPP
在这里插入图片描述
为方便编程计算,引入一个过渡矩阵AAA
在这里插入图片描述

在这里插入图片描述
注: 式中的333是指矩阵得维数。
  在matlabmatlabmatlab中验证一下
在这里插入图片描述
与计算得结果一致。

状态空间表达式

  有如下系统
在这里插入图片描述
  该系统中,物块质量为MMM,弹簧弹力系数为kkk,阻尼系数为BBB,系统输入为拉力FFF。于是有
在这里插入图片描述
状态变量
在这里插入图片描述


在这里插入图片描述
测量量
在这里插入图片描述
状态空间表达式
在这里插入图片描述
化为离散形式
在这里插入图片描述
  由于系统存在各种不确定性,需要加入过程噪声WWW和测量噪声VVV,即
在这里插入图片描述
  WWW服从正态分布,期望为000,协方差矩阵为QQQ,即P(W)−N(0,Q)P(W)-N(0,Q)P(W)N(0,Q)VVV也服从正态分布,期望为000,协方差矩阵为RRR,即P(V)−N(0,R)P(V)-N(0,R)P(V)N(0,R)。其中Q=E[WWT]Q=E[WW^T]Q=E[WWT],推导如下:
在这里插入图片描述
同理,R=E[VVT]R=E[VV^T]R=E[VVT]

卡尔曼增益推导

  由于过程噪声是不确定的,于是状态估计值先验为
在这里插入图片描述
根据先验估计和测量估计可得出后验估计
在这里插入图片描述
G=G=G= KkHHH,则
在这里插入图片描述
  我们的目标是求得合理的Kk值使得估计误差最小,有
在这里插入图片描述
同理
在这里插入图片描述
  当后验估计值越接近真实值 Xk, 则说明 ek 的方差越小,即 ek 越接近于期望值000。于是有
在这里插入图片描述
接着推导
在这里插入图片描述


在这里插入图片描述

先验误差协方差矩阵

在这里插入图片描述

ek的协方差矩阵Pk

  由之前的推导可得
在这里插入图片描述

总结

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值