伪随机数发生器

伪随机数发生器

杂乱的方法

用杂乱的算法生成,但是是错的,不可用

线性同余法

线性同余法是一种使用很广泛的伪随机数发生器算法,然后,他不能用于密码技术。其算法如下:假设我们要生成的伪随机数列R0,R1,R2,…。
首先我们根据伪随机数的种子,用下列公式计算第一个伪随机数R0。
第一个伪随机数R0=(Ax种子+C)mod M。
第二个伪随机数R1=AxR0+C)mod M。
依次计算Rn+1。
简单来说,线性同余法就是将当前伪随机数乘以A加上C,然后除以M得到的余数作为下一个伪随机数
线性同余法
伪代码

M=正整数
A=大于0小于M的整数
C=大于0小于M的整数
内部状态=伪随机数的种子
while(true){
	伪随机数=(Ax内部状态+C)mod M;
	内部状态=伪随机数;
	输出伪随机数;
}

单向散列函数法

 单向散列函数法
工作方式如下:

  1. 用伪随机数的种子初始化内部状态(计数器)
  2. 用单向散列函数计算计数器的散列值
  3. 将散列值作为伪随机数输出
  4. 计数器的值加1
  5. 根据需要重复2~4步骤

密码法

这种方法与上面的单向散列函数法基本类似,只是将单向散列函数换成加密算法,算法未明确规定。
密码法

  • 初始化内部状态(计数器)
  • 用密钥加密计数器的值
  • 将密文作为伪随机数输出
  • 计数器的值+1
  • 根据需要重复2~4步骤

ANSI X9.17

实现伪随机数发生器的步骤如下:

  1. 初始化内部状态
  2. 将当前时间加密生成掩码
  3. 对内部状态与掩码异或
  4. 将步骤3结果加密
  5. 将步骤4结果作为伪随机数输出
  6. 对步骤4结果与掩码异或
  7. 将步骤6结果加密
  8. 将步骤7结果作为新的内部状态
  9. 重复2-8步骤
    具体如图所示。
    ANSI X9.17

总结

以上我们介绍几种伪随机数发生器,但用于密码学中的随机数都是真随机数,而不是通过算法去生成的,这种生成的随机数很容易被反推以及破解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值