题目描述
给你一个长度为 n 的整数数组 nums,其中 n > 1,返回输出数组 output ,其中 output[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积
示例:
输入: [1,2,3,4]
输出: [24,12,8,6]
提示:题目数据保证数组之中任意元素的全部前缀元素和后缀(甚至是整个数组)的乘积都在 32 位整数范围内。
说明: 请不要使用除法,且在 O(n) 时间复杂度内完成此题。
进阶:
你可以在常数空间复杂度内完成这个题目吗?( 出于对空间复杂度分析的目的,输出数组不被视为额外空间。)
自己的解法
虽然想法是一样的,但是实现有点差别,时间复杂度差不多,空间复杂度有点不一样,一开始没想到,我竟然用了额外的俩数组
思路
我们不必将所有数字的乘积除以给定索引处的数字得到相应的答案,而是利用索引左侧所有数字的乘积和右侧所有数字的乘积(即前缀与后缀)相乘得到答案。
对于给定索引 ii,我们将使用它左边所有数字的乘积乘以右边所有数字的乘积。下面让我们更加具体的描述这个算法。
算法
初始化两个空数组 L 和 R。对于给定索引 i,L[i] 代表的是 i 左侧所有数字的乘积,R[i] 代表的是 i 右侧所有数字的乘积。
我们需要用两个循环来填充 L 和 R 数组的值。对于数组 L,L[0] 应该是 1,因为第一个元素的左边没有元素。对于其他元素:L[i] = L[i-1] * nums[i-1]。
同理,对于数组 R,R[length-1] 应为 1。length 指的是输入数组的大小。其他元素:R[i] = R[i+1] * nums[i+1]。
当 R 和 L 数组填充完成,我们只需要在输入数组上迭代,且索引 i 处的值为:L[i] * R[i]。
class Solution {
public:
vector<int> productExceptSelf(vector<int>& nums) {
int length = nums.size();
vector<int> l(length, 0), r(length, 0);
vector<int> res(length);
l[0] = 1;
r[nums.size() - 1] = 1;
for(int i = 1; i < length; i++){
l[i] = l[i-1] * nums[i-1];
}
for(int i = length-2; i >= 0; i--){
r[i] = r[i+1] * nums[i+1];
}
for(int i = 0; i < length; i++){
res[i] = l[i] * r[i];
}
return res;
}
};
大佬的解法
//空间复杂度O(1)
class Solution {
public:
vector<int> productExceptSelf(vector<int>& nums) {
vector<int> res(nums.size());
int m = 1;
for (int i = 0; i < nums.size(); ++i) {
res[i] = m;
m *= nums[i];
}
m = 1;
for (int i = nums.size() - 1; i >= 0; --i) {
res[i] *= m;
m *= nums[i];
}
return res;
}
};