codeup 1918 简单计算器(《算法笔记》详细讲解)

本文详细解析了如何通过中缀表达式转后缀表达式算法,结合优先级比较,实现一个简单的计算器,包括操作数合并、操作符栈管理和后缀表达式计算过程。实例演示了转换规则和常见操作符优先级处理技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目在这里:我是题目

思路

题目给出的是中缀表达式,所以要计算他的值主要是两个步骤:

  1. 中缀表达式转后缀表达式。
  2. 计算后缀表达式。

下面分别讲一下这两步:

步骤1:中缀表达式转后缀表达式
  1. 设立一个操作符栈,用以临时存放操作符;设立一个数组或者队列,用以存放后缀表达式。
  2. 从左至右扫描中缀表达式。如果碰到操作数(注意:操作数可能不止一位,因此需要一位一位读入然后合并在一起),就把操作数加入后缀表达式中。
  3. 如果碰到操作符op,就将其优先级与操作符栈的栈顶操作符的优先级比较。
  • 若op的优先级高于栈顶操作符的优先级,则压入操作符栈。
  • 若op的优先级低于或等于栈顶操作符的优先级,则将操作符栈的操作符不断弹出到后缀表达式中,直到op的优先级高于栈顶操作符的优先级。
  1. 重复上述操作,直到中缀表达式扫描完毕,之后若操作符栈中仍有元素,则将他们依次弹出至后缀表达式中。
  • 所谓操作符的优先级即他们计算的优先级,其中乘法==除法>加法==减法,在具体实现上可以用map建立操作符和优先级的映射,优先级可以用数字表示,例如乘法和除法优先级为1,加法和减法优先级为0。

  • 关于为什么当op高于栈顶时就压入操作栈,这里举一个例子:
    对中缀表达式3+2x5,显然如果先计算加法3+2会引起错误,必须先计算乘法2x5。当从左到右扫描时,加号先进入操作符栈,而由于乘号优先级大于加号,其必须先计算,因此在后缀表达式中乘号必须在加号前面,于是在栈中乘号要比加号更靠近栈顶,以让其先于加号进入后缀表达式。

  • 关于为什么op等于栈顶时不能直接压入操作符栈,这里举一个例子:
    对中缀表达式2/3x4,如果设定优先级相等时直接压入操作符栈,那么算法步骤如下:
    a)2进入后缀表达式,当前后缀表达式为2。
    b)/进入操作符栈,当前操作符为/。
    c)3进入后缀表达式,当前后缀表达式23。
    d)x与操作符栈的栈顶元素/比较,相等,压入操作符栈,当前操作符栈为/*
    e)4进入后缀表达式,当前后缀表达式为234。
    f)中缀表达式扫描完毕,操作栈非空,将其全部弹入后缀表达式,最终后缀表达式变为234*/。
    g)计算该后缀表达式,发现其变成了2/(3x4),显然这跟原来中缀表达式的计算结果完全不同。

  • 本题没有出现括号,但是如果出现括号,处理方法也很简单,只需要在步骤3的a与b之前判断,如果是左括号‘(’,就压入操作符栈;如果是右括号’)’,就把操作符栈里的元素不断弹出到后缀表达式直接碰到左括号’(’。

步骤2:计算后缀表达式

从左到右扫描后缀表达式,如果是操作数,就压入栈;如果是操作符,就连续弹出两个操作数(注意:后弹出的是第一操作数,先弹出的是第二操作数),然后进行操作符的操作,生成的新操作数压入栈中。反复后缀表达式扫描完毕,这时栈中只会存在一个数,就是最终的答案。

  • 注意除法可能导致浮点数,因此操作数类型要设成浮点型。
  • 题目中说肯定是合法表达式,因此上面操作一定能够成功。但如果题目表明可能出现非法表达式,那就要注意每一步的对象是否合法。

代码

//1918-ProblemA-简单计算器
/*
中缀转后缀,计算后缀表达式 
步骤一:中缀表达式转后缀表达式
设立一个操作符栈,用以临时存放操作符,根据要求将符合要求的操作符从栈顶弹出到后缀表达式中;
设立一个数组或队列,用以存放后缀表达式。从左到右扫描中缀表达式,如果遇到操作数,
就把操作数加入后缀表达式中;如果遇到操作符,根据后缀表达式的特性,就将其操作符与操作符栈
的栈顶操作符的优先级比较:如果高于栈顶元素的优先级,则压入操作符栈;若低于或等于,则将操作符栈的栈顶元素不断弹出到后缀表达式中,
直到其优先级大于栈顶元素。重复以上操作,直到中缀表达式扫描完毕,之后将操作符栈剩余的操作符依次弹入到后缀表达式中。
步骤二: 计算后缀表达式
从左到右扫描后缀表达式,如果是操作数,则入栈;如果是操作符,则连续弹出两个操作数,
然后进行操作符的操作生成的新操作数压入栈中,直到后缀表达式扫描完毕,最终答案就是栈中最后一个元素。

*/
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
#include <cstdlib>
#include <stack>
#include <map>
#include <string>
using namespace std;

struct node{
	double num;//数字 
	char op;//操作符 
	bool flag;//区分数字(1)操作符(0) 
}; 
string str;
stack<node> s;//操作符栈
queue<node> q;//后缀表达式队列
map<char,int> opp;//操作符优先级映射
void change(){//中缀表达式转后缀表达式
	double num;
	node temp;
	int len = str.length();
	for(int i=0;i<len; ){
		if(str[i] >= '0' && str[i] <= '9'){
			temp.flag = 1;
			temp.num = str[i++] - '0';//读取这个操作数的首位 
			while(i< len && str[i] >= '0' && str[i] <= '9'){//读取这个操作数 
				temp.num = temp.num * 10 + (str[i] - '0');
				i++;
			}
			q.push(temp);
		}
		else{//操作符 
			temp.flag = 0;
//若低于或等于,则将操作符栈的栈顶元素不断弹出到后缀表达式中,
//直到其优先级大于栈顶元素
			while(!s.empty() && opp[str[i]] <= opp[s.top().op]){
				q.push(s.top());
				s.pop();
			}
			//如果高于栈顶元素的优先级,则压入操作符栈
			temp.op = str[i];
			s.push(temp);
			i++;
		}
	} 
	//如果操作符栈中还有操作符,就把它弹出到后缀表达式队列中
	while(!s.empty()){
		q.push(s.top());
		s.pop();
	}
} 
//计算后缀表达式
double cal(){
	double temp1,temp2;
	node cur,temp;
	while(!q.empty()){//后缀表达式非空 
		cur = q.front();//cur暂存队首元素 
		q.pop();
		if(cur.flag == 1)	s.push(cur);//操作数入栈
		else{//操作符
			temp2 = s.top().num;//弹出栈顶第一操作数
			s.pop();
			temp1 = s.top().num;//弹出第二操作数 
			s.pop();
			temp.flag = 1;//临时记录操作数
			if(cur.op == '+')	temp.num = temp1 + temp2;//加法
			else if(cur.op == '-')	temp.num = temp1 - temp2;
			else if(cur.op == '*')	temp.num = temp1 * temp2;
			else	temp.num = temp1 / temp2;
			s.push(temp);//将计算结果压入栈 
		} 
	}
	return s.top().num;//最终数字栈最后一个数即结果 
} 


int main() {
	opp['+'] = opp['-'] = 1;//设定操作符优先级
	opp['*'] = opp['/'] = 2;
	while(getline(cin,str),str != "0"){
		for(string::iterator it = str.end();it!=str.begin();it--){
			if(*it == ' ')	str.erase(it);//去掉表达式中的空格 
		}
		while(!s.empty())	s.pop();//初始化栈
		change();
		printf("%.2lf\n",cal());//计算后缀表达式的值 
	} 
	return 0;
}

	


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值