洛谷P5019 铺设道路(贪心/分治)

本文探讨了一种坑洼填充问题的解决方案,通过分治和贪心两种算法实现。分治算法通过寻找最低点并递归处理左右两侧,而贪心算法则从前向后遍历,确保每次填充都能最小化总成本。最终,贪心算法因其较低的时间复杂度(O(n))而成为更优选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
这道题一看到的思路是分治:每次找到最低点,每个坑相应地填最低点的高度,然后divide为最低点左右两部分按此思路继续divide,直到 l>r 时结束。
分治的做法按提供的样例可以过,但是分治的时间复杂度在[nlogn, n^2]之间,n最大为1e5规模,如果卡了 n2 的样例会TLE。
分治代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1e5+3;
int a[maxn];
int ans;

void divide(int l,int r)
{
	if(l>r) return;
	int minn=0x3f3f3f3f;
	int pos=l;
	for(int i=l;i<=r;i++)
	{
		if(a[i]<minn)
		{
			minn=a[i];
			pos=i;
		} 
	}
	for(int i=l;i<=r;i++)
	{
		a[i]-=minn;
	}
	ans+=minn;
	divide(l,pos-1);
	divide(pos+1,r);
}

int main()
{
	int i,j;
	int n,m;
	scanf("%d",&n);
	for(i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
	}
	ans=0;
	divide(1,n);
	printf("%d\n",ans);
	return 0;
 } 

其实还有贪心的解法:对于各个坑,当大的坑被填时,小的坑肯定也顺带填掉才能使总花费最少,当小坑填完后,大坑还要填(大坑高度-小坑高度)次。因此有:设一个值为0的0号坑,从0号坑开始,若其后的坑的高度比当前坑的高度高,ans加上两者高度差,直到遍历完所有坑,时间复杂度为O(n)。(设定0号坑可行是因为肯定至少要填1号坑的高度次)
贪心代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1e5+3;
int a[maxn];

int main()
{
	int i,j;
	int n,m;
	scanf("%d",&n);
	for(i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
	}
	a[0]=0;
	int ans=0;
	for(i=1;i<=n;i++)
	{
		if(a[i]>a[i-1]) ans+=a[i]-a[i-1]; 
	}
	printf("%d\n",ans);
	return 0; 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值