浅谈HashMap(基于JDK1.8)

浅析HashMap(基于JDK1.8)

  1. HashMap基于JDK1.8的类定义
public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable
  1. 基本原理

HashMap是一个基于map实现的散列表,key允许为空值,但因为key不允许重复,所以只允许一个key为null
HashMap的查询和存储都是依赖于Hash算法
在1.7的情况下,使用的是数组+链表的数据结构,并且链表插入使用的是头插法,这样就导致了之前所说过得环状链表和丢失数据的问题,而在1.8之后整体结构使用的是数组+链表+红黑树,并且插入策略改成了尾插法,规避掉了扩容时逆序的情况,从而解决了1.7的弊病,但是无论如何HashMap都是一个不安全的,所以在多线程情况下不要使用HashMap
HashMap的1.7的时候查询链表的时间复杂度是O(n),而在1.8的时候由于使用了红黑树的结构,他查询的时间复杂度是O(log n)

  1. 特性

HashMap的散列表是懒加载机制,在第一次put的时候才会创建
HashMap是无序不重复的,并不是线程安全的
HashMap只允许一条key为null的值存储,但是可以支持多条value为null的数据
如果在多线程的情况下你实在是想要用HashMap,可以用 Collections 的 synchronizedMap 方法使 HashMap 具有线程安全的能力

  1. 整体的数据结构图

这里是引用

  1. 源码解析

属性默认值

public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable {
    //序列号,序列化的时候使用
    private static final long serialVersionUID = 362498820763181265L;
    //初始的默认容量大小,默认为16,也就是2的4次方
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
    //最大容量,为2的30次方。
    static final int MAXIMUM_CAPACITY = 1 << 30;
    //负载因子,用于扩容使用。
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
   //链表转成红黑树的阈值,在链表的长度大于这个数值之后,链表会进行树华
    static final int TREEIFY_THRESHOLD = 8;
    //红黑树退化成链表的阈值,当树的长度小于这个数值之后,红黑树会退化成链表
    static final int UNTREEIFY_THRESHOLD = 6;
    //当整个hashMap中元素数量大于64时,也会进行转为红黑树结构。
	//HashMap 的最小树形化容量。这个值的意义是:位桶(bin)处的数
	//据要采用红黑树结构进行存储时,整个Table的最小容量(存储方式由
	//链表转成红黑树的容量的最小阈值) 当哈希表中的容量大于这个值
	//时,表中的桶才能进行树形化,否则桶内元素太多时会扩容,而不是
	// 树形化为了避免进行扩容、树形化选择的冲突,这个值不能小于 4 *
	// TREEIFY_THRESHOLD
    static final int MIN_TREEIFY_CAPACITY = 64;
}

属性参数

public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable {
	//HashMap的Node数组
	transient Node<K,V>[] table;
    //将数据转换成set的另一种存储形式,这个变量主要用于迭代功能。
    transient Set<Map.Entry<K,V>> entrySet;
    //元素数量
    transient int size;
    //统计该map修改的次数,用来记录 HashMap 内部结构发生变化的次数,主要用于迭代的快速失败机制
    transient int modCount;
    //HashMap 的门限阀值/扩容阈值,所能容纳的 key-value 键值对极	//
	// 限,当size>=threshold时,就会扩容,计算方法:容量capacity * 负
	// 载因子load factor 。
    int threshold;
    //加载因子
    final float loadFactor;
}

构造方法

// 默认初始化容量+默认负载因子
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
    }
   // 自定义初始化容量+默认负载因子
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }
   // 自定义初始化容量以及负载因子
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

put方法

public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //首先在这里会判断table为空或者lenth的长度为0的时候
      	//会按默认方式对数组进行初始化,因为是懒加载
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        //这里会判断当前节点上是不是为null,也就是table[i]=null这种情况,没有的话就直接插入
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            //这里判断了当前节点不为空时,也就是table[i]是不是传入的值,是的话就覆盖
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            //这里判断了当前传入的节点是不是树形节点,是的话去遍历红黑树,进行添加或者查询覆盖
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            //最后一个情况其实也就是遍历链表,进行覆盖或者添加
            //不过其中有涉及到树化的判断,要重点进行关注
            else {
                for (int binCount = 0; ; ++binCount) {
                	//这里会进行判断,如果遍历链表之后并没有找到这个key
                	//那么就插入一个新的值,插入之前会进行判断,判断当前链表是不是已经到了阈值-1长度
                	//如果已经到了阈值,就会对当前链表进行树化
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    //这里是进行判断能否在链表中查询到该点,能够查到的话直接进行覆盖操作
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            //这里就是如果存在就将它的旧值替换成新值,之后返回旧值
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        //记录结构变换的次数
        ++modCount;
        //如果数组长度已经到达了阈值,那么就进行扩容操作
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

hash方法

	//对key做hash操作,其实就是将key的hashcode值获取出来,高位16位与低位16位做异或操作
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

resize方法

final Node<K,V>[] resize() {
		//获取原来的数组
        Node<K,V>[] oldTab = table;
        //old数组的长度
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        //oldCap > 0也就是说不是首次初始化,因为hashMap用的是懒加载
        if (oldCap > 0) {
        	//判断老的数组长度,如果大于最大值了,就将临界值设置为Integer最大取值
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //没有大于最大限制,那么就将老的数组长度修改原来的两倍,扩容的临界值,也更新为原来的两倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        //如果oldCap<0,但是已经初始化了,像把元素删除完之后的情况,那么它的临界值肯定还存在,        
        //如果是首次初始化,它的临界值则为0
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        //这里就是初始的扩容,一切按照默认的进行设置
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        //对新的临界值进行计算
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        //这里新建了一个根据之前扩容之后的表
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        //从这里开始进入正题,也就是元素在新老数组之间的移动
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                //这里开始判断当前这个节点是不是为null
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    //判断这个节点是不是唯一节点,如果是那么就做hash操作,将其直接放进新数组
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    //如果不是,就需要判断该节点是红黑树还是链表
                    //这里判断是红黑树的情况
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    //这里判断是链表的情况
                    else { // preserve order
                    	//新建两条链表,因为1.8之后已经不是之前全部元素做hash来移位的方法
                    	//而是通过两条链表,一条放在原数组位置,一条放在原数组+扩容大小的位置
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            //这里也就是判断这个点的hash值与上老数组长度是否为0
                            //为0的话将入到不移动的那条链表上
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            //不为0加入到移动的那条链表上
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

split方法,也就是对于红黑树的切割处理

final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
            TreeNode<K,V> b = this;
            //这里其实也大致与链表相同,同样是分出来两个树,一个位置不变,一个位置变动
            //区别仅在于这里到最后会有一个红黑树转链表的判断
            //当不符合红黑树的条件时,会进行去树化,重新退化成链表
            // Relink into lo and hi lists, preserving order
            TreeNode<K,V> loHead = null, loTail = null;
            TreeNode<K,V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            for (TreeNode<K,V> e = b, next; e != null; e = next) {
                next = (TreeNode<K,V>)e.next;
                e.next = null;
                if ((e.hash & bit) == 0) {
                    if ((e.prev = loTail) == null)
                        loHead = e;
                    else
                        loTail.next = e;
                    loTail = e;
                    ++lc;
                }
                else {
                    if ((e.prev = hiTail) == null)
                        hiHead = e;
                    else
                        hiTail.next = e;
                    hiTail = e;
                    ++hc;
                }
            }

            if (loHead != null) {
                if (lc <= UNTREEIFY_THRESHOLD)
                    tab[index] = loHead.untreeify(map);
                else {
                    tab[index] = loHead;
                    if (hiHead != null) // (else is already treeified)
                        loHead.treeify(tab);
                }
            }
            if (hiHead != null) {
                if (hc <= UNTREEIFY_THRESHOLD)
                    tab[index + bit] = hiHead.untreeify(map);
                else {
                    tab[index + bit] = hiHead;
                    if (loHead != null)
                        hiHead.treeify(tab);
                }
            }
        }

get方法

final Node<K,V> getNode(int hash, Object key) {
		//查询这个没啥好说的
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

remove方法

 public V remove(Object key) {
        //临时变量
        Node<K,V> e;
        /**调用removeNode(hash(key), key, null, false, true)进行删除,第三个value为null,表示,把key的节点直接都删除了,不需要用到值,如果设为值,则还需要去进行查找操作**/
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }
    
    /**第一参数为哈希值,第二个为key,第三个value,第四个为是为true的话,则表示删除它key对应的value,不删除key,第四个如果为false,则表示删除后,不移动节点**/
    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        //tab 哈希数组,p 数组下标的节点,n 长度,index 当前数组下标
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        //哈希数组不为null,且长度大于0,然后获得到要删除key的节点所在是数组下标位置
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            //nodee 存储要删除的节点,e 临时变量,k 当前节点的key,v 当前节点的value
            Node<K,V> node = null, e; K k; V v;
            //如果数组下标的节点正好是要删除的节点,把值赋给临时变量node
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            //也就是要删除的节点,在链表或者红黑树上,先判断是否为红黑树的节点
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    //遍历红黑树,找到该节点并返回
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else { //表示为链表节点,一样的遍历找到该节点
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        /**注意,如果进入了链表中的遍历,那么此处的p不再是数组下标的节点,而是要删除结点的上一个结点**/
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            //找到要删除的节点后,判断!matchValue,我们正常的remove删除,!matchValue都为true
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                //如果删除的节点是红黑树结构,则去红黑树中删除
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                //如果是链表结构,且删除的节点为数组下标节点,也就是头结点,直接让下一个作为头
                else if (node == p)
                    tab[index] = node.next;
                else /**为链表结构,删除的节点在链表中,把要删除的下一个结点设为上一个结点的下一个节点**/
                    p.next = node.next;
                //修改计数器
                ++modCount;
                //长度减一
                --size;
                /**此方法在hashMap中是为了让子类去实现,主要是对删除结点后的链表关系进行处理**/
                afterNodeRemoval(node);
                //返回删除的节点
                return node;
            }
        }
        //返回null则表示没有该节点,删除失败
        return null;
    }

PS:都是在学中总结的,有错误希望各位可以及时指正

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值