- 博客(862)
- 收藏
- 关注
原创 Milvus北辰使者的来信:Milvus Workshop是什么,我们为什么做这件事
Milvus Workshop 通过提供结构化、动手实践的学习体验,为用户在其 AI 和 ML 项目中充分利用 Milvus 提供了入门指南。它通过提供丰富的教程、示例代码和实践项目,降低 Milvus 的学习门槛,帮助开发者更高效地掌握和应用向量数据库技术。社区协作需求:开发者希望有一个开放的平台,可以分享 Milvus 的使用经验、案例和最佳实践。促进社区协作:鼓励开发者贡献自己的案例、工具和经验,打造一个活跃的 Milvus 学习社区。Milvus 的崛起与社区需求。Milvus北辰使者。
2025-07-25 18:25:43
849
原创 直播预告丨运维部署有妙招!Milvus 稳定运行秘籍大公开
刘川丰将结合实战经验,详解 Milvus 运维部署的最佳实践,助力大家解决日常运维中的痛点问题,让 Milvus 运行更稳定高效。欢迎大家锁定 Zilliz 视频号直播间,和我们一起探索 Milvus 运维部署的门道,提升 Milvus 使用体验!客户催上线,老板一句“今天下班前搞定”,你却要手动改一堆 YAML、调资源、配高可用、还得盯着监控别挂了服务?更有自由讨论环节开放提问,现场提出在 Milvus 运维部署中遇到的困惑,与讲师深入交流。7 月 31 日 20:00-21:0。
2025-07-24 20:15:40
179
原创 ES vs Milvus vs PG vector :LLM时代的向量数据库选型指南
但只有开源是不够的,大型开源项目的迭代维护是需要很高的人力投入,单靠个人开发者几乎无法支撑,业界知名的数据服务相关的开源项目,比如Spark、MongoDB、Kafka,背后都是有成熟的商业化公司在运营。在此基础上,VDB的商业化方案,则应该保持云中立,在保证弹性、低运维投入的基础上,能满足不同业务、不同地区产品,以及不同阶段企业的多样化需求。Top-K相似性检索是最常见的向量检索需求,但除此之外过滤检索、阈值检索、分组检索和混合检索,也是一个企业级向量数据库的必备功能。互联网时代,关系型数据库为王。
2025-07-17 19:31:50
771
原创 实战|从grok4与kimi2谈谈,大模型进入十万亿训练数据时代,如何做数据查重
但一个问题是,来自公域互联网的这些预训练数据中往往会存在大量重复冗余内容,如果将其一股脑不加选择的用于预训练,不仅浪费计算资源,更会导致大模型反复“咀嚼”相同的知识,在重复内容上过拟合,降低了对新信息的泛化能力。根据IDC的预测,到2027年,全球范围内,没有统一格式、缺乏明确定义字段的非结构化数据,总量将达到近250ZB,占比达到整体数据总量的86.8%。(2)能用上Minhash LSH的场景,通常是针对百亿、千亿甚至万亿数据的查重,这对服务背后的性能、工程化能力全都提出了极为苛刻的要求。
2025-07-15 20:17:04
868
原创 直播预告丨解锁运维部署最佳实践,让你的 Milvus 更稳定!
刘川丰将结合实战经验,详解 Milvus 运维部署的最佳实践,助力大家解决日常运维中的痛点问题,让 Milvus 运行更稳定高效。欢迎大家锁定 Zilliz 视频号直播间,和我们一起探索 Milvus 运维部署的门道,提升 Milvus 使用体验!客户催上线,老板一句“今天下班前搞定”,你却要手动改一堆 YAML、调资源、配高可用、还得盯着监控别挂了服务?更有自由讨论环节开放提问,现场提出在 Milvus 运维部署中遇到的困惑,与讲师深入交流。7 月 31 日 20:00-21:0。
2025-07-14 19:05:14
405
原创 推出了四个MCP后,我们发现MCP的落地速度已经赶不上吹牛速度
目前已经支持使用英语、中文、西班牙语等语言与数据库交互,例如:“查找与该产品描述相似的文档” 或 “创建一个存储 512 维图像嵌入的集合”,“创建一个免费的 Milvus 集群”,用户无需打开控制台,也不需要配置细节,即可获得即用型数据库实例。更直白来说,MCP本身很好,但大模型在精准理解人类意图环节就出了问题,或者大模型本身在执行过程中有幻觉,那MCP自然也无法满足需求。开发成本降低,大模型的工具使用能力增加,过去一些繁琐专业的操作,可以借助大模型以自然语言交互的方式来完成。
2025-07-08 18:35:16
664
原创 超级黑马Read AI如何在美国把会议转录做成一门大生意
Assistant(会议助手):自动加入 Zoom、Meet、Teams 等会议,实时收集发言、注意力、情感、发言频率等互动数据,自动记录每个发言人的“语气”和“情绪走势”(这是其核心功能,也是其争议来源)。Read AI 选择扩充其产品矩阵:日历同步、CRM同步、邮件汇总、即时通讯汇总、视频会议汇总功能依次上线,基于以上数据,Read AI又推出了会议总结、会议分析、多平台信息检索等功能,从前,用户要自己提问,才能得到回应。此外,用户要的不是原话,而是理解:他想知道,客户是不是在动摇;
2025-07-07 18:48:33
894
原创 我们是向量数据库的领军企业,我们在等你来
回顾历史,过去四十年的PC时代,如何更好的管理基础数据,诞生了Oracle这样三万亿(RMB)市值的巨头;目之所及,所有你听过的全球知名企业:英伟达、苹果、OpenAI、PayPal、AWS、微软、Google、阿里云……2. 精通Pulsar/Kafka/RabbitMQ、Etcd/Zookeeper等主流中间件系统的应用、排障、调优,并具备一定的二次定制能力。很显然,面对人工智能这样一个更广阔的市场,非结构化数据这样一个更大的蓝海,我们关于未来的想象力,不止于此。
2025-07-03 18:46:00
1021
原创 深度分析 | 自动驾驶数据挖掘的三座大山与向量数据库胜负手
在自动驾驶算法持续迭代的背景下,Zilliz 允许对已有数据的 embedding 进行批量替换,配合 alias 机制可帮助业务在无感切换模型的同时保持数据查询的稳定性:Zilliz 支持同时写入由不同模型生成的向量,并可通过混合搜索(hybrid search)对多向量列进行检索,为模型对比和联合分析提供便利。同一时期,作为国内智驾投入最为激进的车企,小鹏正式宣布,面向智驾经验用户即刻推送无限XNGP智能辅助驾驶功能,并且,该功能将不限城市、不限路线,有导航的地方就能使用。
2025-07-03 18:46:00
1050
原创 G2发布最新向量数据库报告,Zilliz斩获最佳性能与最易用荣誉
举个简单的例子,很多向量数据库的报告,主要看的还是一些古早Benchmark测评数据,但这些Benchmark通常会做出一些不切实际的假设:比如,所有数据默认已经全部导入,索引已经完全建立。此外, Zilliz Cloud还提供了“易于使用的仪表盘和 API,用于数据库管理和监控”,以及简洁明了的文档体系,便于用户上手。从应用广度来看,向量数据库的场景仍在不断横向拓展,从RAG建设、知识库构建,搜索、推荐,再到生物制药、大模型数据管理、自动驾驶数据挖掘,每一个场景都有着完全不同的成本、性能、安全性考量。
2025-07-02 18:33:57
738
原创 从8万+数据源提炼洞察,ChatGPT+Zilliz +LangChain如何成创新药研发新范式
与此同时,创新药产业还长期被专利悬崖所制约:即一款创新药的专利有效期通常仅有20年,而除掉漫长的6-10年临床,企业对药品的实际独占权仅有12-14年。也就是说,在这中间,加速任何一个环节尤其是耗时最久的临床期的效率与变革,无论对药企的发展,还是对病人的生存质量,都至关重要。,以及企业的内部私有数据,在进行数据汇总时,会分析和交叉核对不同来源的数据进行二次验证,从而保证信息的准确性以及及时性。能够处理数十亿个向量、具备商业级的系统可靠性、能够同时处理结构化信息,以及PDF在内格式复杂的非结构化内容。
2025-07-01 20:08:44
887
原创 开源|VDBBench 1.0正式官宣,完全复刻业务场景,支持用户自定义数据集
比如,SIFT 和 GloVe 这类数据集通常用于较小规模的低维向量,但如今的模型,尤其是大模型(例如 OpenAI 和 Cohere 的嵌入模型),其向量维度通常远超这些传统数据集,且规模上也大得多。通常来说,带过滤条件的搜索是一个常见的实际应用场景,比如,在电商或推荐系统中,用户往往会根据不同的标签或特征筛选数据(如“颜色==红色”)。通过这样的数据集,我们能够测试系统在大规模高维数据上的表现,包括存储、查询和检索的性能,确保测试结果能够真实反映现代大数据场景下的挑战。
2025-06-27 18:49:04
817
原创 直播预告丨聊聊Milvus 2.6新功能及背后的开发故事
圆桌环节更有技术负责人、QA大佬和社区主理人分享 Milvus 2.6 开发背后的故事,并现场解答社区用户问题。7 月 1 日晚上 20:00-21:00,Zilliz 视频号直播间,Zilliz 合伙人。欢迎大家锁定 Zilliz 视频号直播间,与我们一起探索 Milvus 2.6 的技术魅力!和研发VP 栾小凡将带来《一步到位,详解 Milvus 2.6 新功能》的分享,点击下方预约,共享知识探索之旅!开发者生产力拉满的新功能。性能不打折的技术升级。
2025-06-26 18:23:56
260
原创 成本降50%、准确率提升40%,美国头部地产AI 公司用Agent弯道超车
针对关键交易,检索到的上下文会通过多个大型语言模型(如 Claude 或 OpenAI GPT)进行验证,以确保信息的准确性与多视角的理解,从而增强系统的稳健性和可信度。如此一来,你问:“XX交易的关联方以及各自适用的交易规则都有哪些”时, 大模型无法直接回答的问题,使用RAG技术,将相关的历史资料汇集,就能生成一个足够准确又智能的回复。与此同时,客户的要求也越来越多,比如交易完成,所有的embedding数据就要删除,来保护客户隐私——高频的数据增删,对索引的构建与维护能力,提出了巨大的要求。
2025-06-25 18:09:59
567
原创 干货|从FiDRAG到GraphRAG,RAG选型终极指南
随着RAG技术的不断演进,开发者可以根据需求选择合适的变体,应用于不同的领域和场景,解锁AI技术的新潜力。它能够快速定位关键信息,支持文本和图像的多模态检索,提升了检索的速度和精度。:与传统方法一次性检索所有数据的模式不同,新的RAG模型能够根据问题的具体需求,动态判断是否进行外部信息检索,显著提升了效率并减少了不必要的数据浪费。通过Zilliz Cloud的托管Milvus服务,开发者可以轻松地部署这些先进的RAG变体,推动AI技术的发展,助力各行业创造更加智能和高效的系统。
2025-06-24 18:30:08
822
原创 官宣|Zilliz Cloud 建表功能大升级,更多检索类型支持,更低成本
本次调整,在 Schema 设计中将其与标量列、向量列并列展示,并辅以描述和使用场景说明,帮助用户理解这也是一种特殊的列类型,并了解其能力差异。本次优化我们将这些设置收起,既满足了功能需求,又确保了高频操作的易用性,使主要的建表流程更加简洁。现在,我们直接在界面中展示这些默认配置,并支持您根据实际需求进行修改,同时还提供了不同配置的作用及最佳实践,帮助用户轻松做出最适合的选择。同时,界面默认仅创建向量索引,缺乏对标量索引作用的说明,导致许多用户在高频使用标量字段进行筛选时未配置索引,进而严重影响查询性能。
2025-06-20 18:08:13
826
原创 热点|Anthropic vs Devin:成本15倍换90%性能提升,Multi-Agent没有未来?
多智能体系统中,每个AI都有自己的"认知边界"和"知识盲区",当它们各自处理信息片段时,缺乏全局视角的统一协调机制。现阶段,多智能体系统是不是"好",最终还是要看它能解决什么问题,以及解决这个问题的价值是不是大于它消耗的成本。现在最强的模型上下文窗口也就200万tokens,看起来很多,但真正处理复杂任务时根本不够用,一旦记忆爆满就直接出现“失忆”的尴尬情况,而多智能体就能很好的解决这个问题。现在,是时候来聊聊那个最扎心的问题了:多智能体系统,在2025年的今天,它到底是个"天使"还是个"魔鬼"?
2025-06-19 18:28:59
284
原创 索引选不对,成本贵十倍!一文读懂向量索引选型
其中,DiskANN是基于 Vamana 图结构,通过 PQ 压缩向量,在硬盘上建立可导航索引,适用于十亿级数据集。基于此前提,Milvus 仅扫描质心接近查询向量的桶内向量,而非整个数据集,从而在保持可接受精度的同时,降低计算成本。在向量检索中,索引能显著提升查询效率,但也会带来一定的预处理时间开销、额外的存储空间占用,以及在搜索过程中更高的内存消耗。此外,使用索引相对于暴搜而言,通常召回率会出现一定的下降,虽然影响有限,但在对精度有要求的场景中仍需关注。在思考如何挑选索引之前,我们需要知道什么是索引。
2025-06-18 18:09:02
978
原创 AI法律*百亿向量,Zilliz 助力美国法律AI独角兽Filevine服务5000+律所
Filevine 最早尝试过传统 NLP 系统、关键词索引引擎,但最终全部以败北收场,因为这两类方案,全都解决不了NLP无法理解专有名词(例如“brief”既可以是摘要,也可以是某类诉状);法律信息非常敏感,因此向量数据库必须满足企业级合规控制、私钥管理、访问审计功能全覆盖,Zilliz Cloud在设计伊始就考虑到了以上问题,通过 SOC 2 Type 2 认证和全面的安全控制,让其尤其擅长管理处理敏感数据。通过直观的自然语言界面,允许律师询问有关其案件的问题,并从完整的案件文件中获得即时、准确的答案。
2025-06-17 18:17:52
758
原创 开源|Milvus在GitHub都3.5万颗星了,你还不知道Zilliz团队?
同年,我们从基金会“毕业”,成为顶级项目,走出了自己的技术节奏。我们并不介意这种“被隐藏”的状态。我们相信,经过时间的沉淀,无论你是 AI 原生初创公司、财富 500 强企业、政府及科研机构,业务用途是构建搜索引擎、推荐系统,还是多模态大模型的向量检索加速器,Zilliz Cloud 都能为你提供值得信赖的基础设施。原因是,我们观察到了在AI时代,越来越多的企业随着数据规模的不断增加,除了向量数据库之外,还需要一个足够便宜、足够弹性的向量检索产品,这就是我们推出vector data lake的原因。
2025-06-09 17:56:44
1077
原创 Response指南:为什么90%的多模态RAG,一做就会,一用就废?
过程中,像Milvus这样的向量数据库,可以把RAG系统的“知识外脑”变得可扩展、可控、可观测。为了让模型具有“长期记忆”,多模态RAG可以将来自外部的图像、文字、音频、视频等信息嵌入(embedding)到向量数据库(如 Milvus 或托管版 Zilliz Cloud)中,结合检索与生成,形成增强的智能推理能力。近年来,GPT-4V、Gemini Pro Vision 等多模态大模型快速兴起,将图像、文本、音频等多种数据类型统一理解的能力,拓展到了搜索问答、辅助诊疗、法律检索等更复杂的任务场景中。
2025-06-05 19:20:39
861
原创 官宣| Zilliz Cloud 推出在线迁移功能,无感迁移不停机
从小团队到独角兽,没有哪家公司的系统架构是一夜长成的——规模小的时候,业务在 serverless 上跑,大点了换成 Dedicated 集群,再长出多地容灾、多副本隔离、CU 动态伸缩……我们花这么大力气做“在线迁移”,其实是想传达一个态度:你可以从小集群开始试错,也可以随着业务增长去切更强的配置,如果有一天你需要迁移数据,希望你不会再觉得这是个负担,而只是一件可以顺利完成的小事。另外,你会在每个关键节点收到邮件提醒,整个过程只有秒级延迟,对现有服务的影响非常小,几乎可以忽略;索引改不了,配置调不动。
2025-05-22 18:07:33
607
原创 从部署到迁移,怎么用好Milvus,这是我们的经验总结
我们相信,所有对用户加上条条框框的最优,都是产品与技术的偷懒,我们必须让用户在每个“我不确定能不能跑”的节点上,都能有一条“跑得通”的路径。它的初衷是为了让你在“不想选”“不知道选谁”或者“选择过程太繁琐”的时候,先让机器智能的帮你决策,把东西跑起来,好让你能先把注意力放在更关键的地方,比如数据本身有没有问题、embedding模型是不是有效。Milvus是大家共同努力的结果,任何一位发声的用户不仅是“用户”,也是伙伴,这是对我们的一种深度的信任,也是一种稀缺的关系。
2025-05-21 18:59:05
892
原创 Milvus Week | Kafka 很好, Pulsar也不错,但WoodPecker才是未来
Milvus 架构的这一轮革新,不仅简化了整体系统设计,优化了成本结构,也提升了数据Freshness与故障恢复速度。Woodpecker 采用 “ZeroDisk” 架构,所有日志数据存储于云对象存储,元数据则由 etcd 等分布式 KV 系统管理,彻底消除了本地磁盘依赖,降低了运维压力,并提升了数据持久性和扩展能力。通过 Streaming Service,Milvus 实现了原生的数据订阅能力,移除冗余缓存、降低内存消耗、提升一致性读取的延迟表现,同时极大增强了系统的可扩展性与容灾能力。
2025-05-16 18:23:28
899
原创 Milvus Week | 脱离生产环境的Benchmark ,谁信谁就输了
这一点,在向量数据库Benchmark上尤是如此。在 VDBBench 中,我们专门测量这两个指标,从而揭示在真实场景中,95% 或 99% 的查询实际能达到的性能表现。每写入完 10% 的数据,就进行一次搜索测试(包含串行与并发模式),并记录相关指标,包括延迟、QPS 和召回率。在向量搜索中,速度很重要,但不是唯一的重点,如果没有准确率(recall)的配合,这种性能数据本身毫无意义。但是,不要迷信任何纸面数据,再细致的Benchmark设计,也永远无法覆盖所有真实场景中千变万化的客户需求。
2025-05-15 19:18:31
826
原创 一手测评|RAG总卡死?大模型给Embedding API 时延背了太多锅了
相比之下,步骤 2 中调用 Embedding API 的延迟,如果高达数百毫秒甚至数秒,就会成为用户能明显感受到的、阻塞整个流程的‘第一道坎’,因此常常是实际的性能瓶颈点。你不再需要在代码中分别对接各个厂商的 SDK,只需在 Milvus 中配置好 Function 并提供你的 API Key(Bring Your Own Key, BYOK),就可以轻松切换和对比不同模型在真实 Milvus 操作(如插入、查询)中的端到端性能表现。Embedding服务Provider提供的便利的背后,性能代价如何?
2025-05-08 18:08:08
774
原创 Milvus多租户实践:你的技术选型扛得住一夜爆火吗?
在超大规模 collection 集群中,随着数据的持续写入,segment 数量会达到百万级(例如,若系统中有 10k 个 collection,每个 collection 有 100 个 partition,则 segment 数量至少会有 10k * 100 个),因而使得系统触发的索引构建任务会达到数百万个,导致任务积压率持续升高,查询性能衰减,任务调度成为系统瓶颈点之一。该模型会持续监测任务执行状态,当检测到大量索引构建任务时,会开启并发调度,同时执行多个任务,以达到资源最大化利用的目的。
2025-05-07 18:52:46
769
原创 Office Hour(线上研讨会)丨如何让Milvus更快,从资源配置到索引参数
在此之后,我们会开设半小时(20:30-21:00)的自由讨论时间,交给大家自由延伸与交流。5月15日晚上20:00-21:00,Zilliz直播间,《如何让milvus更快,从资源配置到索引参数》的分享。报名进专属微信群,使用腾讯会议参会。
2025-05-07 18:52:46
209
原创 Milvus五一专场,致敬每一个为开源社区贡献力量的北辰使者们
大家好,我是北辰使者老Z,一个职业生涯覆盖了从最早的Red Hat、OpenStack,到K8s、Ansible等开源基础设施,再到近年来的AI大模型与向量数据库架构实践的运维与架构设计老鸟,平时的“生活只有工作”。而 Milvus 北极星计划旨在汇集和团结 Milvus 社区的热心用户及开发者,组成社区大使团队,根据不同朋友擅长的能力(Coding、写作、沟通、布道、活动组织等),在社区中分配职责,共同建设运营 Milvus 社区,为社区发展壮大探索方向。说起我和开源的缘分,其实是从2020年开始的。
2025-04-30 18:56:12
772
原创 一文读懂Milvus核心参数,十分钟解决80% 的配置问题
最后还需要强调一点,数据的可见性和 Flush 没关系,是由查询的一致性等级来决定的,之前社区里有不少朋友担心数据可见性的问题,每插入一次数据,都会调一次 Flush,导致系统整体性能非常差,并且影响稳定性。对于性能要求不严苛,但是成本比较敏感的场景,比如自动驾驶模型训练中的 corner case 图片搜索,超大规模知识库系统,我们可以利用索引量化或磁盘+内存的方式,在有限内存里装更多的数据,当然这样做的代价就是牺牲召回率或性能。根据机器配置情况,可以将这两个参数调大到 4G 或者 8G。
2025-04-23 20:01:16
1515
原创 Langchain 吐槽OpenAI根本不懂 AI agent和workflow?知识点全解析
它们通常以包含提示、模型和工具,以及一些参数。大多数人会把 LangGraph 描述为一个声明式框架,但其实在LangGraph ,虽然节点与边之间的连接是通过声明式方式完成的,但节点和边本身其实就是普通的 Python 或 TypeScript 函数。边可以是固定的,也可以是条件式的,因此即使整体结构是声明式的,但。文章中给出的反驳,同样干货满满,堪称是agentic system选型指南,可以快速帮助开发者们梳理清楚agentic system开发中的常见问题,以及相关业务构建逻辑,非常值得一读。
2025-04-22 20:04:00
1230
原创 直播预告丨Milvus如何让机器翻译更精准:术语校对的深度解析
4月24日晚上20:00-21:00,Zilliz直播间,沉浸式翻译团队。欢迎大家锁定Zilliz直播间,与我们一起用AI重新定义网文翻译!Milvus 在网文术语校对中的应用。点击下方预约,共享知识探索之旅!机器翻译中的术语约束问题。
2025-04-21 19:17:14
327
原创 风口|继MoE、MCP与A2A之后,下一个模型协作风口是MoA
MoA:一个三层系统,每层有六个提议者(Qwen1.5-110B-Chat, Qwen1.5-72B-Chat, WizardLM-8x22B, LLaMA-3-70B-Instruct, Mixtral-8x22B-v0.1, dbrx-instruct),并以 Qwen1.5-110B-Chat 作为聚合者。基于这些发现,作者提出了 MoA 概念。这显示了 MoA 方法的潜力,即最终的聚合器并非简单地从提议者的回复中选择其一,而是对所有提议者的回复进行汇总整合,从而生成一个更强大、更可靠的最终回复。
2025-04-21 19:17:14
1010
1
原创 讨论|谁能统一Agent 接口?MCP 对比 A2A 、Function Calling
此外,对于函数的链式调用,Function Calling本身并不直接支持多步调用组合,模型只能一次调用一个函数,获取结果后如果需调用下一个函数,需要由应用逻辑将结果馈入模型下一轮对话,再触发下一个函数调用。MCP 的扩展性,则通过统一的接口标准,将复杂的M(个模型)×N(个外部工具对接)问题转化为M+N的问题:工具创建者只需为每个工具/系统实现一次MCP Server,应用开发者只需为每个应用实现一次MCP Client,各自遵循通用协议即可协同工作,接着,服务器处理请求并返回响应,告知任务的状态。
2025-04-14 18:59:43
1027
原创 90%的DeepSeek一体机,都是拍脑袋交的“智商税”
单机版本的优势是简单上手快,短板也很明显,没有高可用能力,数据量增长到千万级,QPS 增长到几百以上,性能就会遇到瓶颈。而高可用和可扩展性,是 Milvus 集群版的天然能力,但是集群版依赖的 K8s环境,一体机几乎很难提供,很多套壳公司也不具备这个能力,所以,现实是,大部分一体机厂商仅仅满足于Docker单机版,不做容灾,只能“祈祷”机房不出故障、数据不暴涨。最过分的,是给客户甲的产品,改个名字,换个logo(是的,毕竟是私有部署,所以连UI都不用换)就卖给客户乙,美其名曰定制化,然后额外收费几十万。
2025-04-10 18:22:01
1214
原创 深度干货|万字长文解读向量数据库的前世今生(先码后学)
例如,在经过良好训练的词向量模型中,“king”(国王)和“queen”(王后)的向量表示通常比它们与“automobile”(汽车)的距离更近,从而反映出它们在语义上的相关性。而在对速度要求高于完美召回的场景中(如高吞吐量的推荐系统和大规模特征匹配),二值索引也能展现出优异的性能。向量数据库是先进推荐系统的重要基础。例如,在某些对准确性要求较高的应用(如医学影像分析、金融风控)中,召回率可能需要达到 95% 甚至更高,而在搜索引擎、推荐系统等场景中,80%-90% 的召回率可能已经能提供足够的用户体验。
2025-04-09 18:27:53
1017
原创 放弃pgvector,Milvus 才是海量非结构化数据自动分片最优解
实际上,PG与Milvus的选择背后,不只是向量数据库如何选型这么简单,而是代表了一个技术团队的长期技术哲学思考:究竟是先快速上线搞定需求,还是将眼光放得更长远,考虑半年、一年甚至三年五年的长期需求。:在一开始,应该把所有数据分成多少片,几乎没人说得清。一开始看似低门槛的解决方案,发展到后期,随着数据量的增长,全都会变成惰性带来的技术负债:一个短择的技术决策,可能导致长期的遗患无穷。,将数据分布在多个服务器上,从而减轻单个服务器的压力,以更低成本,提高整体系统的性能和扩展性,并保证,在单一节点出现故障时,
2025-04-02 17:59:58
678
原创 先码后学|从Manus到DeepSearcher,2025年最值得关注的十大AI Agent
通过利用 GPT-4 的强大能力,AutoGPT 可以将复杂目标分解为更小的、可执行的任务,按顺序执行这些任务,并根据结果进行迭代,以实现预期的结果。每次对向量数据库中内容完成数据查询后,系统都会启动一个反馈(reflection)流程,然后在每一轮迭代结束时,智能体(Agent)会对查询到的知识进行评估,判断其是否足以解答初始提出的问题。然而,就像人类一样,Agent 需要可靠的记忆才能有效运作,这也是向量数据库之所以必要的原因,它为存储、管理和检索上下文数据提供了必要的基础设施。
2025-03-26 18:35:17
954
原创 Milvus×最新版DeepSeek v3:对标Claude,本地数据五分钟写网站
如何将它与RAG结合?在搭建好一个最基本的RAG之后,接下来,我们对原装版DeepSeek-V3-0324 以及结合了Milvus+DeepSeek-V3-0324的RAG版本做一下效果对比。另外,我们通过实验发现,相比前一段时间风很大的推理模型,作为非推理模型的新版V3,虽然不会在回答中给出详细的推理过程,但其答案生成仍展现了一定的逻辑与思考能力。与之形成对比,推理模型做RAG与Agent ,效果很好,但却会对一些简单的指令判断,做一大堆分析与反复思考确认,不仅消耗过多token,回答速度还慢。
2025-03-25 18:45:08
876
原创 Agent的安卓时刻到了!MCP协议下的Cursor与Milvus部署指南
通过MCP服务器,开发者无需深入了解Milvus的底层API细节,就可以轻松实现向量数据的实时查询、相似度搜索和数据管理等操作,极大地降低了向量数据库应用的开发门槛。下面这张图,这是不是你使用大模型的日常:无所不能的DeepSeek老师,能30秒告诉你量子力学的发展与演变,却不能告诉你如何买到清明节出去玩的最便宜的机票。服务器是MCP的核心,它们连接AI模型与实际数据源。甚至,还有人将其重要性与互联网时代http协议的发明相媲美——统一的接口标准,意味着更低的开发难度,撬动的是无限可能的生态开发潜力。
2025-03-19 18:27:42
1675
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人