旋转数组的最小数字
问题描述
- 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。
- 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。
算法思路一:遍历
- 其实很简单,直接遍历该数组即可,就可以找到最小值,时间复杂度为O(n)
- 但是实际上面试题中出现这种题肯定不会让你用这种方法,所以要优化解法
算法思路二:二分查找
-
首先这道题是类似于数组的查找问题,实际上数组的查找一般来说最快的就是二分查找了,时间复杂度为O(logn)
-
我们都知道对于二分查找来说,一般要求是数组必须有序,但是这道题目数组并不是有序的!为什么还可以使用二分查找呢?因为二分查找并不局限于有序数组,对于局部有序的数组也可以往二分查找的思路上靠。
-
观察数组,我们可以发现该数组分为了两部分的有序数组,并且前面的数组元素都大于后面的数组元素,而我们需要的元素都在右边的小数组中,所以我们算法思路有两步:
- 第一步是首先定位到右边的数组,
- 第二步右边的数组中进行二分查找
-
算法过程:
-
样例输入N【3,4,5,1,2】,双指针 begin = 0, end = 4 ,mid = (begin + end)/ 2
-
首先查找中间元素N【mid】= M【2】 = 5, 由于 N【mid】> N【begin】,所以我们知道该元素在左边的数组中,所以需要定位到右边的数组。即:begin = mid
-
此时 begin = 2 end = 4
-
再查找中间元素N【mid】= N【3】 = 1,由于N【mid】< N【end】,所以知道该元素在右边的数组中,那么目标元素要不然是其本身,要不然就在其左边。再将:end = mid
-
此时 begin = 2 end = 3
-
当发现begin和end只差1的时候,就说明找到了该目标元素即N【end】
-
实现
public static int searchMin1(int[] nums){
int begin = 0;
int end = nums.length - 1;
int mid = (begin + end) / 2;
if(nums[begin] < nums[end]) return nums[begin]; //本身是自己的旋转
while(begin < end){
if(nums[mid] < nums[mid - 1]){ //这里也可以换成 end - begin == 1
return nums[mid];
}else if(nums[mid] >= nums[begin]){
begin = mid;
}else if(nums[mid] <= nums[end]){
end = mid;
}
mid = (begin + end) / 2;
}
throw new IllegalArgumentException("xxx");
}
总结
- 这道题目最大的收获其实就是对于二分查找的新认识,二分查找不仅限于有序的数组,对于部分有序的数组也是可以进行二分的。
- 其实本质上是每次都可以通过判断mid的值来锁定下次查找的方向!