【1】引言
前序学习进程中,已经初步了解了伽马函数,认识到
n
n
n的阶乘计算可以转化为:
n
!
=
n
!
⋅
l
i
m
k
→
+
∞
k
n
⋅
k
!
(
n
+
k
)
!
=
l
i
m
k
→
+
∞
k
n
⋅
k
!
⋅
n
!
(
n
+
k
)
!
=
l
i
m
k
→
+
∞
k
n
⋅
k
!
(
n
+
1
)
(
n
+
2
)
.
.
.
(
n
+
k
)
n!=n! \cdot lim_{k\rightarrow+\infty}\frac{k^n\cdot k!}{(n+k)!}=\\lim_{k\rightarrow+\infty}\frac{k^n\cdot k!\cdot n!}{(n+k)!}=\\ lim_{k\rightarrow+\infty}\frac{k^n\cdot k!}{(n+1)(n+2)...(n+k)}
n!=n!⋅limk→+∞(n+k)!kn⋅k!=limk→+∞(n+k)!kn⋅k!⋅n!=limk→+∞(n+1)(n+2)...(n+k)kn⋅k!
如果把整数
n
n
n替换成任意实数
x
x
x,就会有:
x
!
=
l
i
m
k
→
+
∞
k
x
⋅
k
!
(
x
+
1
)
(
x
+
2
)
.
.
.
(
x
+
k
)
x!=lim_{k\rightarrow+\infty}\frac{k^x\cdot k!}{(x+1)(x+2)...(x+k)}
x!=limk→+∞(x+1)(x+2)...(x+k)kx⋅k!
此时,只要
x
x
x不是负整数,因为负整数会导致分母为0,上述计算式就能执行,此时阶乘形式的伽马函数被扩展到除负整数以外的所有实数。
但大家熟悉的伽马函数其实是一个指数积分形式,因此还需继续探究。
【2】证明积分式和阶乘式相等
证明 ∫ 0 1 ( − l n t ) s d t = s ! \int_{0}^{1}(-lnt)^sdt=s! ∫01(−lnt)sdt=s!
【2.1】积分变换
首先令
u
=
−
l
n
t
u=-ln t
u=−lnt,有:
d
u
=
−
1
t
d
t
d
t
=
−
t
d
u
t
=
e
−
u
du=-\frac{1}{t}dt\\ dt=-tdu \\t=e^{-u}
du=−t1dtdt=−tdut=e−u
此时被积函数变换为:
(
−
l
n
t
)
s
=
u
s
(-lnt)^s=u^s
(−lnt)s=us
当
t
→
0
+
t\rightarrow 0^+
t→0+时,
u
=
−
l
n
t
=
+
∞
u=-lnt=+\infty
u=−lnt=+∞
当
t
→
1
t\rightarrow 1
t→1时,
u
=
−
l
n
t
=
0
u=-lnt=0
u=−lnt=0
将上述变换代入积分式:
∫
0
1
(
−
l
n
t
)
s
d
t
=
∫
+
∞
0
u
s
(
−
t
)
d
u
=
∫
+
∞
0
u
s
(
−
e
u
)
d
u
=
∫
0
+
∞
u
s
e
−
u
d
u
\int_{0}^{1}(-lnt)^sdt=\int_{+\infty}^{0}u^s(-t)du=\\ \int_{+\infty}^{0}u^s(-e^u)du=\int_{0}^{+\infty}u^se^{-u}du
∫01(−lnt)sdt=∫+∞0us(−t)du=∫+∞0us(−eu)du=∫0+∞use−udu
【2.2】分部积分-s为正整数
当 s s s为正整数 n n n时,积分先写作:
∫
0
1
(
−
l
n
t
)
s
d
t
=
∫
0
+
∞
u
n
e
−
u
d
u
\int_{0}^{1}(-lnt)^sdt=\int_{0}^{+\infty}u^ne^{-u}du
∫01(−lnt)sdt=∫0+∞une−udu
令
v
=
u
n
,
d
w
=
e
−
u
d
u
v=u^n,dw=e^{-u}du
v=un,dw=e−udu,有:
d
v
=
n
u
n
−
1
d
u
,
w
=
−
e
−
u
dv=nu^{n-1}du,w=-e^{-u}
dv=nun−1du,w=−e−u
此时积分式转化为:
∫
0
1
(
−
l
n
t
)
s
d
t
=
∫
0
+
∞
u
n
e
−
u
d
u
=
∫
0
+
∞
v
d
w
=
v
w
∣
0
+
∞
−
∫
0
+
∞
w
d
v
=
(
u
n
(
−
e
−
u
)
)
∣
0
+
∞
+
∫
0
+
∞
n
u
n
−
1
e
−
u
d
u
=
0
+
∫
0
+
∞
n
u
n
−
1
e
−
u
d
u
=
n
∫
0
+
∞
u
n
−
1
e
−
u
d
u
\int_{0}^{1}(-lnt)^sdt=\int_{0}^{+\infty}u^ne^{-u}du=\\ \int_{0}^{+\infty}vdw=vw|_{0}^{+\infty}-\int_{0}^{+\infty}wdv=\\ (u^n(-e^{-u}))|_{0}^{+\infty}+\int_{0}^{+\infty}nu^{n-1}e^{-u}du=\\ 0+\int_{0}^{+\infty}nu^{n-1}e^{-u}du=n\int_{0}^{+\infty}u^{n-1}e^{-u}du
∫01(−lnt)sdt=∫0+∞une−udu=∫0+∞vdw=vw∣0+∞−∫0+∞wdv=(un(−e−u))∣0+∞+∫0+∞nun−1e−udu=0+∫0+∞nun−1e−udu=n∫0+∞un−1e−udu
这时候先暂停一下,根据前述推导有:
∫
0
+
∞
u
n
e
−
u
d
u
=
n
∫
0
+
∞
u
n
−
1
e
−
u
d
u
\int_{0}^{+\infty}u^ne^{-u}du=n\int_{0}^{+\infty}u^{n-1}e^{-u}du
∫0+∞une−udu=n∫0+∞un−1e−udu按照这个形式,会有:
∫
0
+
∞
u
n
e
−
u
d
u
=
n
∫
0
+
∞
u
n
−
1
e
−
u
d
u
=
n
(
n
−
1
)
∫
0
+
∞
u
n
−
2
e
−
u
d
u
=
.
.
.
=
n
(
n
−
1
)
.
.
.2
∫
0
+
∞
u
1
e
−
u
d
u
=
n
(
n
−
1
)
.
.
.2
⋅
1
∫
0
+
∞
u
0
e
−
u
d
u
=
n
!
\int_{0}^{+\infty}u^ne^{-u}du=n\int_{0}^{+\infty}u^{n-1}e^{-u}du=\\ n(n-1)\int_{0}^{+\infty}u^{n-2}e^{-u}du=...=\\ n(n-1)...2\int_{0}^{+\infty}u^{1}e^{-u}du=\\ n(n-1)...2\cdot 1\int_{0}^{+\infty}u^{0}e^{-u}du=n!
∫0+∞une−udu=n∫0+∞un−1e−udu=n(n−1)∫0+∞un−2e−udu=...=n(n−1)...2∫0+∞u1e−udu=n(n−1)...2⋅1∫0+∞u0e−udu=n!至此可知,当
s
s
s为正整数
n
n
n时,
∫
0
1
(
−
l
n
t
)
s
d
t
=
s
!
\int_{0}^{1}(-lnt)^sdt=s!
∫01(−lnt)sdt=s!
【3】总结
当
s
s
s为正整数
n
n
n时,
∫
0
1
(
−
l
n
t
)
s
d
t
=
s
!
\int_{0}^{1}(-lnt)^sdt=s!
∫01(−lnt)sdt=s!,积分式和阶乘式相等。